LOTS OF MATHS JOKES

Logic is a systematic method for getting the wrong conclusion... with confidence.

Surely statistics is a systematic method for getting the wrong conclusion... with 95% confidence.

Mathematics is the systematic misuse of a nomenclature developed for that specific purpose.

Topologist is a man who doesn’t know the difference between a coffee up and a doughnut.

Most prime numbers are even.

Proof: pick up any math text and look for a prime number. The first one you find will probably be even.

Once upon a time, when I was training to be a mathematician, a group of us bright young students taking number theory discovered the names of the smaller prime numbers.

2: The Odd Prime -- It's the only even prime, therefore is odd. QED.

3: The True Prime -- Lewis Carroll: "If I tell you three times, it's true."

31: The Arbitrary Prime -- Determined by unanimous unvote. We needed an arbitrary prime in case the prof asked for one, and so had an election.
91 received the most votes (well, it "looks" prime) and 3+4i the next most. However, 31 was the only candidate to receive none at all. Since the composite numbers are formed from primes, their qualities are derived from those primes. So, for instance, the number 6 is "odd but true", while the powers of 2 are all extremely odd numbers.

Life is complex, it has real and imaginary components.

Trigonometry for farmers: swine and cowswine.

"The number you have dialed is imaginary. Please rotate your phone 90 degrees and try again."

Mathematician's PICK UP LINE: Hey baby, how would you like to join me in some math? We'll add you and me, subtract our clothes, divide your legs, and multiply! Of course, we'll be entirely discrete.

Four branches of arithmetic - ambition, distraction, uglification and derision. (Lewis Caroll: "Alice in Wonderland")

First law of Engineering Mathematics: All infinite series converge, and moreover converge to the first term.

A student at our high school a few years back, having had his fill with drawing graph after graph in senior high math class, told his teacher: Miss, I'll do algebra, I'll do trig, and I'll even do statistics, but graphing is where I draw the line!

A bunch of Polish scientists decided to flee their repressive government by hijacking an airliner and forcing the pilot to fly them to a western country. They drove to the airport, forced their way on board a large passenger jet, and found there was no pilot on board. Terrified, they listened as the sirens got louder. Finally, one of the
scientists suggested that since he was an experimentalist, he would try to fly the aircraft. He sat down at the controls and tried to figure them out. The sirens got louder and louder. Armed men surrounded the jet. The would be pilot's friends cried out, "Please, please take off now!!! Hurry!!!!!!". The experimentalist calmly replied, "Have patience. I'm just a simple pole in a complex plane."

"Algebraic symbols are used when you do not know what you are talking about."

Asked how his pet parrot died, the mathematician answered "Polynomial. Polygon."

Lumberjacks make good musicians because of their natural logarithms.

Theorem: Consider the set of all sets that have never been considered. Hey! They're all gone!! Oh, well, never mind...

A Cherokee indian chief had three wives, each of whom was pregnant. The first squaw gave birth to a boy, and the chief was so elated he built her a teepee made of buffalo hide. A few days later, the second squaw gave birth, and also had a boy. The chief was extremely happy; he built her a teepee made of antelope hide. The third squaw gave birth a few days later, but the chief kept the birth details a secret. He built the woman a teepee out of hippopotamus hide, and challenged the people in the tribe to guess the most recent birth details, the correct guesser receiving a fine prize. Several of his people tried, but were unsuccessful in their guesses. Finally, a young brave came forth and declared that the third wife had delivered twin boys. "Correct!", cried the chief. "How did you know"? "It's simple", replied the warrior. "The value of the squaw of the hippopotamus is equal to the sons of the squaws of the other two hides."

There was once a very smart horse. Anything that was shown it, it mastered easily, until one day, its teachers tried to teach it about rectangular coordinates and it couldn't understand them. All the horse's acquaintances and friends tried to figure out what was the matter and couldn't. Then a new guy (what the heck, a computer engineer) looked at the problem and said, "Of course he can't do it. Why, you're putting Descartes before the horse!"
TOP TEN EXCUSES FOR NOT DOING THE MATH HOMEWORK

1. I accidentally divided by zero and my paper burst into flames.

2. Isaac Newton's birthday.

3. I could only get arbitrarily close to my textbook. I couldn't actually reach it.

4. I have the proof, but there isn't room to write it in this margin.

5. I was watching the World Series and got tied up trying to prove that it converged.

6. I have a solar powered calculator and it was cloudy.

7. I locked the paper in my trunk but a four-dimensional dog got in and ate it.

8. I couldn't figure out whether i am the square of negative one or i is the square root of negative one.

9. I took time out to snack on a doughnut and a cup of coffee. I spent the rest of the night trying to figure which one to dunk.

10. I could have sworn I put the homework inside a Klein bottle, but this morning I couldn't find it.

The guy gets on a bus and starts threatening everybody: "I'll integrate you! I'll differentiate you!!" So everybody gets scared and runs away. Only one person stays. The guy comes up to him and says: "Aren't you scared, I'll integrate you, I'll differentiate you!!" And the other guy says: "No, I am not scared, I am e^x."

A constant function and e^x are walking on Broadway. Then suddenly the constant function sees a differential operator approaching and runs away. So e^x follows him and asks why the hurry. "Well, you see, there's this differential operator coming this way, and when we meet, he'll differentiate me and nothing will be left of me...!"

"Ah," says e^x, "he won't bother ME, I'm e to the x!" and he walks on. Of course he meets the differential operator after a short distance. e^x: "Hi, I'm e^x" diff.op.: "Hi, I'm d/dy"
We use epsilons and deltas in mathematics because mathematicians tend to make errors.

After the earth dries out, Noah tells all the animals to 'go forth and multiply'. However, two snakes, adders to be specific, complain to Noah that this is one thing they have never been able to do, hard as they have tried. Undaunted, Noah instructs the snakes to go into the woods, make tables from the trunks of fallen trees and give it a try on the tabletops. The snakes respond that they don’t understand how this will help them to procreate whereupon Noah explains: "Well, even adders can multiply using log tables!"

I saw the following scrawled on a math office blackboard in college: $1 + 1 = 3$, for large values of 1

Math and Alcohol don’t mix, so... PLEASE DON'T DRINK AND DERIVE. Then there’s every parent’s scream when their child walks into the room dazed and staggering: OH NO...YOU'VE BEEN TAKING DERIVATIVES!!

What’s a polar bear? A: A rectangular bear after a coordinate transform.

What do you call... A Politically Correct angle?.............. Right.

A stubborn angle?......................... Obtuse.

A pretty angle?............................ Acute.

Why did the chicken cross the road? Pierre de Fermat: I just don’t have room here to give the full explanation.

If God is perfect, why did He create discontinuous functions?
"First and above all he was a logician. At least thirty-five years of the half-century or so of his existence had been devoted exclusively to proving that two and two always equal four, except in unusual cases, where they equal three or five, as the case may be." -- Jacques Futrelle, "The Problem of Cell 13" Most mathematicians are familiar with -- or have at least seen references in the literature to -- the equation 2 + 2 = 4. However, the less well known equation 2 + 2 = 5 also has a rich, complex history behind it. Like any other complex quantity, this history has a real part and an imaginary part; we shall deal exclusively with the latter here.

Many cultures, in their early mathematical development, discovered the equation 2 + 2 = 5. For example, consider the Bolb tribe, descended from the Incas of South America. The Bolbs counted by tying knots in ropes. They quickly realized that when a 2-knot rope is put together with another 2-knot rope, a 5-knot rope results.

Recent findings indicate that the Pythagorean Brotherhood discovered a proof that 2 + 2 = 5, but the proof never got written up. Contrary to what one might expect, the proof's nonappearance was not caused by a cover-up such as the Pythagoreans attempted with the irrationality of the square root of two. Rather, they simply could not pay for the necessary scribe service. They had lost their grant money due to the protests of an oxen-rights activist who objected to the Brotherhood's method of celebrating the discovery of theorems. Thus it was that only the equation 2 + 2 = 4 was used in Euclid's "Elements," and nothing more was heard of 2 + 2 = 5 for several centuries.

Around A.D. 1200 Leonardo of Pisa (Fibonacci) discovered that a few weeks after putting 2 male rabbits plus 2 female rabbits in the same cage, he ended up with considerably more than 4 rabbits. Fearing that too strong a challenge to the value 4 given in Euclid would meet with opposition, Leonardo conservatively stated, "2 + 2 is more like 5 than 4." Even this cautious rendition of his data was roundly condemned and earned Leonardo the nickname "Blockhead." By the way, his practice of underestimating the number of rabbits persisted; his celebrated model of rabbit populations had each birth consisting of only two babies, a gross underestimate if ever there was one.
Some 400 years later, the thread was picked up once more, this time by the French mathematicians. Descartes announced, "I think 2 + 2 = 5; therefore it does." However, others objected that his argument was somewhat less than totally rigorous. Apparently, Fermat had a more rigorous proof which was to appear as part of a book, but it and other material were cut by the editor so that the book could be printed with wider margins.

Between the fact that no definitive proof of $2 + 2 = 5$ was available and the excitement of the development of calculus, by 1700 mathematicians had again lost interest in the equation. In fact, the only known 18th-century reference to $2 + 2 = 5$ is due to the philosopher Bishop Berkeley who, upon discovering it in an old manuscript, wryly commented, "Well, now I know where all the departed quantities went to -- the right-hand side of this equation." That witticism so impressed California intellectuals that they named a university town after him. But in the early to middle 1800’s, $2 + 2$ began to take on great significance. Riemann developed an arithmetic in which $2 + 2 = 5$, paralleling the Euclidean $2 + 2 = 4$ arithmetic. Moreover, during this period Gauss produced an arithmetic in which $2 + 2 = 3$. Naturally, there ensued decades of great confusion as to the actual value of $2 + 2$. Because of changing opinions on this topic, Kempe’s proof in 1880 of the 4-color theorem was deemed 11 years later to yield, instead, the 5-color theorem. Dedekind entered the debate with an article entitled "Was ist und was soll $2 + 2$?" Frege thought he had settled the question while preparing a condensed version of his "Begriffsschrift." This condensation, entitled "Die Kleine Begriffsschrift (The Short Schrift)," contained what he considered to be a definitive proof of $2 + 2 = 5$. But then Frege received a letter from Bertrand Russell, reminding him that in "Grundzüge der Mathematik" Frege had proved that $2 + 2 = 4$. This contradiction so discouraged Frege that he abandoned mathematics altogether and went into university administration. Faced with this profound and bewildering foundational question of the value of $2 + 2$, mathematicians followed the reasonable course of action: they just ignored the whole thing.

And so everyone reverted to $2 + 2 = 4$ with nothing being done with its rival equation during the 20th century. There had been rumors that Bourbaki was planning to devote a volume to $2 + 2 = 5$ (the first forty pages taken up by the symbolic expression for the number five), but those rumor remained unconfirmed. Recently, though, there have been reported computer-assisted proofs that $2 + 2 = 5$, typically involving computers belonging to utility companies. Perhaps the 21st century will see yet another revival of this historic equation.
A retired mathematician took up gardening, and is now growing carrots with square roots.

In the Garden of Eden, God is giving Adam a geometry lesson: "Two parallel lines intersect at infinity. It can't be proved but I've been there". And God said "Let there be numbers", and there were numbers. Odd and even created he them, and he said unto them be fruitful and multiply; and he commanded them to keep the laws of induction.

This isn't really a joke, it supposedly happened in a UK GCSE exam some years ago, but it may amuse you: question: how many times can you subtract 7 from 83, and what is left afterwards? answer: I can subtract it as many times as I want, and it leaves 76 every time.

Mermaid mathematicians wear algebras.

If parallel lines meet at infinity - infinity must be a very noisy place with all those lines crashing together!

Two mathematicians are looking at a convergent series. The first one says, "Do you realize that the series converges even when all the terms are made positive?" The second asks, "Are you sure about that?" The first replies "Absolutely!"

Theorem: All positive integers are equal.

Proof : Sufficient to show that for any two positive integers, A and B, A = B.

Further, it is sufficient to show that for all N > 0, if A and B (positive integers) satisfy (MAX(A, B) = N) then A = B.

Proceed by induction.

If N = 1, then A and B, being positive integers, must both be 1, so A = B.
Assume that the theorem is true for some value k.

Take A and B with \(\text{MAX}(A, B) = k + 1 \).

Then \(\text{MAX}((A-1), (B-1)) = k \).

And hence \((A-1) = (B-1) \).

Consequently, \(A = B \).

Theorem : 3=4

Proof: Suppose: \(a + b = c \)

This can also be written as: \(4a - 3a + 4b - 3b = 4c - 3c \)

After reorganising: \(4a + 4b - 4c = 3a + 3b - 3c \)

Take the constants out of the brackets: \(4 * (a+b-c) = 3 * (a+b-c) \)

Remove the same term left and right: \(4 = 3 \)

Theorem: 1$ = 1c.

Proof: \(1$ = 100c = (10c)^2 = (0.1\$)^2 = 0.01$ = 1c \)

Here $ means dollars and c means cents.

This one is scary in that I have seen PhD’s in math who were unable to see what was wrong with this one.

Actually I am crossposting this to sci.physics because I think that the latter makes a very nice introduction to the importance of keeping track of your dimensions...

Theorem: 1 = -1

Proof: \(1 = \sqrt{1} = \sqrt{-1} \times -1 = \sqrt{-1} \times \sqrt{-1} = i^2 = -1 \)
Theorem: All positive integers are interesting.

Proof: Assume the contrary.

Then there is a lowest non-interesting positive integer.

But, hey, that's pretty interesting! A contradiction.

Methods of Mathematical Proof This is from 'A Random Walk in Science' (by Joel E. Cohen?):

To illustrate the various methods of proof we give an example of a logical system.

Lemma 1. All horses are the same colour.

(Proof by induction) Proof. It is obvious that one horse is the same colour. Let us assume the proposition P(k) that k horses are the same colour and use this to imply that k+1 horses are the same colour. Given the set of k+1 horses, we remove one horse; then the remaining k horses are the same colour, by hypothesis. We remove another horse and replace the first; the k horses, by hypothesis, are again the same colour. We repeat this until by exhaustion the k+1 sets of k horses have been shown to be the same colour. It follows that since every horse is the same colour as every other horse, P(k) entails P(k+1). But since we have shown P(1) to be true, P is true for all succeeding values of k, that is, all horses are the same colour.

Theorem 1. Every horse has an infinite number of legs.

(Proof by intimidation.) Proof. Horses have an even number of legs. Behind they have two legs and in front they have fore legs. This makes six legs, which is certainly an odd number of legs for a horse. But the only number that is both odd and even is infinity. Therefore horses have an infinite number of legs. Now to show that this is general, suppose that somewhere there is a horse with a finite number of legs. But that is a horse of another colour, and by the lemma that does not exist.
Corollary 1. Everything is the same colour.

Proof. The proof of lemma 1 does not depend at all on the nature of the object under consideration. The predicate of the antecedent of the universally-quantified conditional ‘For all x, if x is a horse, then x is the same colour,’ namely ‘is a horse’ may be generalized to ‘is anything’ without affecting the validity of the proof; hence, ‘for all x, if x is anything, x is the same colour.’

Corollary 2. Everything is white.

Proof. If a sentential formula in x is logically true, then any particular substitution instance of it is a true sentence. In particular then: ‘for all x, if x is an elephant, then x is the same colour’ is true. Now it is manifestly axiomatic that white elephants exist (for proof by blatant assertion consult Mark Twain ‘The Stolen White Elephant’). Therefore all elephants are white. By corollary 1 everything is white.

Theorem 2. Alexander the Great did not exist and he had an infinite number of limbs.

Proof. We prove this theorem in two parts. First we note the obvious fact that historians always tell the truth (for historians always take a stand, and therefore they cannot lie). Hence we have the historically true sentence, ‘If Alexander the Great existed, then he rode a black horse Bucephalus.’ But we know by corollary 2 everything is white; hence Alexander could not have ridden a black horse. Since the consequent of the conditional is false, in order for the whole statement to be true the antecedent must be false. Hence Alexander the Great did not exist. We have also the historically true statement that Alexander was warned by an oracle that he would meet death if he crossed a certain river. He had two legs; and ‘forewarned is four-armed.’ This gives him six limbs, an even number, which is certainly an odd number of limbs for a man. Now the only number which is even and odd is infinity; hence Alexander had an infinite number of limbs. We have thus proved that Alexander the Great did not exist and that he had an infinite number of limbs.
Prove that the crocodile is longer than it is wide.

Lemma 1. The crocodile is longer than it is green:

Let's look at the crocodile. It is long on the top and on the bottom, but it is green only on the top. Therefore, the crocodile is longer than it is green.

Lemma 2. The crocodile is greener than it is wide:

Let's look at the crocodile. It is green along its length and width, but it is wide only along its width. Therefore, the crocodile is greener than it is wide.

From Lemma 1 and Lemma 2 we conclude that the crocodile is longer than it is wide.

"The group was alarmed to find that if you are a labourer, cleaner or dock worker, you are twice as likely to die than a member of the professional classes" [The Sunday Times 31st August 1980]

It's like the tale of the roadside merchant who was asked to explain how he could sell rabbit sandwiches so cheap. "Well" he explained, "I have to put some horse-meat in too. But I mix them 50:50. One horse, one rabbit."

Smoking is a leading cause of statistics.

Did you know that the great majority of people have more than the average number of legs?
A statistician can have his head in an oven and his feet in ice, and he will say that on the average he feels fine.

People who do very unusual jobs: the man who counts then number of people at public gatherings. You’ve probably seen his headlines, “Two million flock to see Pope.”, “200 arrested as police find ounce of cannabis.”, “Britain £3 billion in debt”. You probably wondered who was responsible for producing such well rounded-up figures. What you didn’t know was that it was all the work of one man, Rounder-Up to the media, John Wheeler. But how is he able to go on turning out such spot-on statistics? How can he be so accurate all the time? “We can’t” admits Wheeler blithely. “Frankly, after the first million we stop counting, and round it up to the next million. I don’t know if you’ve ever counted a papal flock, but, not only do they look a bit the same, they also don’t keep still, what with all the bowing and crossing themselves.” “The only way you could do it accurately is by taking an aerial photograph of the crowd and handing it to the computer to work out. But then you’d get a headline saying "1,678,163 [sic] flock to see Pope, not including 35,467 who couldn’t see him”, and, believe me, nobody wants that sort of headline. "The art of big figures, avers Wheeler, lies in psychology, not statistics. The public like a figure it can admire. It likes millionaires, and million-sellers, and centuries at cricket, so Wheeler’s international agency gives them the figures it wants, which involves not only rounding up but rounding down. "In the old days people used to deal with crowds on the Isle of Wight principle -- you know, they’d say that every day the population of the world increased by the number of people who could stand upright on the Isle of Wight, or the rain-forests were being decreased by an area the size of Rutland. This meant nothing. Most people had never been to the Isle of Wight for a start, and even if they had, they only had a vision of lots of Chinese standing in the grounds of the Cowes Yacht Club. And the Rutland comparison was so useless that they were driven to abolish Rutland to get rid of it. "No, what people want is a few good millions. A hundred million, if possible. One of our inventions was street value, for instance. In the old days they used to say that police had discovered drugs in a quantity large enough to get all of Rutland stoned for a fortnight. "We" started saying that the drugs had a street value of £10 million. Absolutely meaningless, but people understand it better." Sometimes they do get the figures spot on. "250,000 flock to see Royal two", was one of his recent headlines, and although the 250,000 was a rounded-up figure, the two was quite correct. In his palatial office he sits surrounded by relics of past headlines - a million-year-old fossil, a £500,000 Manet, a photograph of the Sultan of Brunei’s £10,000,000 house - but pride of place goes to a pair of shoes framed on the wall. "Why the shoes? Because they cost me £39.99. They serve as a reminder of mankind’s other great urge, to have stupid odd figures. Strange, isn’t it? They want mass demos of exactly half a million, but they also want their gramophone records to go round at thirty-three-and-
a-third, forty-five and seventy-eight rpm. We have stayed in business by remembering that below a certain level people want oddity. They don’t want a rocket costing £299 million and 99p, and they don’t want a radio costing exactly £50. “How does he explain the times when the figures clash - when, for example, the organisers of a demo claim 250,000 but the police put it nearer 100,000? “We provide both sets of figures; the figures the organisers want, and the figures the police want. The public believe both. If we gave the true figure, about 167,890, nobody would believe it because it doesn’t sound believable. “John Wheeler’s name has never become well-known, as he is a shy figure, but his firm has an annual turnover of £3 million and his eye for the right figure has made him a rich man. His greatest pleasure, however, comes from the people he meets in the counting game. “Exactly two billion, to be precise.” MILES KINGTON writing in The Observer, 3 November 1986

Did you hear about the Statistician that couldn’t get laid? He decided a simulation was good enough.

She was only the statistician’s daughter, but she knew all the standard deviations.

A stats major was completely hung over the day of his final exam. It was a True/False test, so he decided to flip a coin for the answers. The stats professor watched the student the entire two hours as he was flipping the coin...writing the answer...flipping the coin...writing the answer. At the end of the two hours, everyone else had left the final except for the one student. The professor walks up to his desk and interrupts the student, saying: “Listen, I have seen that you did not study for this statistics test, you didn’t even open the exam. If you are just flipping a coin for your answer, what is taking you so long? The student replies bitterly (as he is still flipping the coin): “Shhh! I am checking my answers!”

There was this statistics student who, when driving his car, would always accelerate hard before coming to any junction, whizz straight over it, then slow down again once he’d got over it. One day, he took a passenger, who was understandably unnerved by his driving style, and asked him why he went so fast over junctions. The statistics student replied, “Well, statistically speaking, you are far more likely to have an accident at a junction, so I just make sure that I spend less time there.”
A famous statistician would never travel by airplane, because he had studied air travel and estimated the probability of there being a bomb on any given flight was 1 in a million, and he was not prepared to accept these odds. One day a colleague met him at a conference far from home. "How did you get here, by train?" "No, I flew." "What about your the possibility of a bomb?" Well, I began thinking that if the odds of one bomb are 1:1,000,000, then the odds of TWO bombs are $(1/1,000,000) \times (1/1,000,000)$. This is a very, very small probability, which I can accept. So, now I bring my own bomb along!"

Norwegian professor of statistics bears the name of Just Gjessing. Very close to being very fitting.....

Three men are in a hot-air balloon. Soon, they find themselves lost in a canyon somewhere. One of the three men says, "I've got an idea. We can call for help in this canyon and the echo will carry our voices far. "So he leans over the basket and yells out, "Hellowooooo! Where are we?" (They hear the echo several times.) 15 minutes later, they hear this echoing voice: "Hellowooooo! You're lost!!" One of the men says, "That must have been a mathematician." Puzzled, one of the other men asks, "Why do you say that?" The reply: "For three reasons. (1) he took a long time to answer, (2) he was absolutely correct, and (3) his answer was absolutely useless."

Two math professors are in a restaurant. One argues that the average person does not know any math beyond high school. The other argues that the average person knows some more advanced math. Just then, the first one gets up to use the rest room. The second professor calls over his waitress and says, "When you bring our food, I'm going to ask you a mathematical question. I want you to answer, 'One third x cubed.' Can you do that?" The waitress says, "I don't know if I can remember that. One thurr... um..." "One third x cubed," says the prof. "One thir dex cue?," asks the waitress. "One" "One" "Third" "Third" "X" "X" "Cubed" "Cubed" "One third X cubed" "One third X cubed". The waitress leaves, and the other professor comes back. They resume their conversation until a few minutes later when the waitress brings their food. The professor says to the waitress, "Say, do you mind if I ask you something?" "Not at all" "Can you tell me what the integral of x squared dx is?" The waitress pauses, then says, "One third x cubed." As she walks away, she stops, turns, and adds, "Plus a constant!"
Physics professor is walking across campus, runs into Math Professor. Physics professor has been doing an experiment, and has worked out an empirical equation that seems to explain his data, and asks the Math professor to look at it. A week later, they meet again, and the Math professor says the equation is invalid. By then, the Physics professor has used his equation to predict the results of further experiments, and he is getting excellent results, so he asks the Math professor to look again. Another week goes by, and they meet once more. The Math professor tells the Physics professor the equation does work, “But only in the trivial case where the numbers are real and positive.

\[
(12 + 144 + 20 + (3 \times 4^{(1/2)})) / 7) + (5 \times 11) = 9^2 + 0
\]

Or for those who have trouble with the poem: A Dozen, a Gross and a Score, plus three times the square root of four, divided by seven, plus five times eleven, equals nine squared and not a bit more.

A graduate student at Trinity Computed the square of infinity. But it gave him the fidgets To put down the digits, So he dropped math and took up divinity.

I've heard that the government wants to put a tax on the mathematically ignorant. Funny, I thought that's what the lottery was!

Anyone who cannot cope with mathematics is not fully human. At best he is a tolerable subhuman who has learned to wear shoes, bathe and not make messes in the house.

"A mathematician is a device for turning coffee into theorems" (P. Erdos)
Addendum: American coffee is good for lemmas

An engineer thinks that his equations are an approximation to reality. A physicist thinks reality is an approximation to his equations. A mathematician doesn't care.
I do not think -- therefore I am not. Here is the illustration of this principle: One evening Rene Descartes went to relax at a local tavern. The tender approached and said, "Ah, good evening Monsieur Descartes! Shall I serve you the usual drink?". Descartes replied, "I think not.", and promptly vanished.

A mathematician is a blind man in a dark room looking for a black cat which isn't there. (Charles R Darwin)

A statistician is someone who is good with numbers but lacks the personality to be an accountant.

Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and non-bananas.

Philosophy is a game with objectives and no rules. Mathematics is a game with rules and no objectives.

Maths is the language God used to write the universe.

Asked if he believes in one God, a mathematician answered: "Yes, up to isomorphism."

The good Christian should beware of mathematicians and all those who make empty prophecies. The danger already exists that mathematicians have made a covenant with the devil to darken the spirit and confine man in the bonds of Hell. (St. Augustine)

"God geometrizes" says Plato, and here is the analytical continuation of this saying: Biologists think they are biochemists, Biochemists think they are Physical Chemists,
Physical Chemists think they are Physicists, Physicists think they are Gods, And God thinks he is a Mathematician.

A mathematician, a physicist, an engineer went again to the races and laid their money down. Commiserating in the bar after the race, the engineer says, "I don't understand why I lost all my money. I measured all the horses and calculated their strength and mechanical advantage and figured out how fast they could run..." The physicist interrupted him: "...but you didn't take individual variations into account. I did a statistical analysis of their previous performances and bet on the horses with the highest probability of winning..." "...so if you're so hot why are you broke?" asked the engineer. But before the argument can grow, the mathematician takes out his pipe and they get a glimpse of his well-fattened wallet. Obviously here was a man who knows something about horses. They both demanded to know his secret. "Well," he says, "first I assumed all the horses were identical and spherical..."

An engineer, a physicist and a mathematician are staying in a hotel. The engineer wakes up and smells smoke. He goes out into the hallway and sees a fire, so he fills a trash can from his room with water and douses the fire. He goes back to bed. Later, the physicist wakes up and smells smoke. He opens his door and sees a fire in the hallway. He walks down the hall to a fire hose and after calculating the flame velocity, distance, water pressure, trajectory, etc. extinguishes the fire with the minimum amount of water and energy needed. Later, the mathematician wakes up and smells smoke. He goes to the hall, sees the fire and then the fire hose. He thinks for a moment and then exclaims, "Ah, a solution exists!" and then goes back to bed.

A biologist, a physicist and a mathematician were sitting in a street cafe watching the crowd. Across the street they saw a man and a woman entering a building. Ten minutes they reappeared together with a third person. - They have multiplied, said the biologist. - Oh no, an error in measurement, the physicist sighed. - If exactly one person enters the building now, it will be empty again, the mathematician concluded.

A chemist, a physicist, and a mathematician are stranded on an island when a can of food rolls ashore. The chemist and the physicist come up with many ingenious ways to open the can. Then suddenly the mathematician gets a bright idea: "Assume we have a can opener ..."
Several scientists were all posed the following question: "What is pi?" The engineer said: "It is approximately 3 and 1/7" The physicist said: "It is 3.14159" The mathematician thought a bit, and replied "It is equal to pi".

"This is a one line proof...if we start sufficiently far to the left."

Q: Why did the mathematician name his dog "Cauchy"? A: Because he left a residue at every pole.

And now, some poetry

"Roses are red,
Violets are blue,
Greens' functions are boring
And so are Fourier transforms."

Pi goes on and on and on ...

And e is just as cursed.

I wonder: Which is larger
When their digits are reversed?