Prophet Inequalities Made Easy:
Stochastic Optimization by Pricing Non-Stochastic Inputs

Paul Dütting

Joint work with Michal Feldman (Tel Aviv), Thomas Kesselheim (Bonn), and Brendan Lucier (Microsoft)

2nd AlgoUK Workshop, Liverpool,
20-09-2018
An Online Assignment Problem

- Fixed set of m seats to assign
- Sequence of n requests arrive online
- Each request assigns a value to each set of seats
- Goal: assign seats online to maximize total value
An Online Assignment Problem
An Online Assignment Problem

Need 4 adjacent seats.
Value: 100/seat for front row, 80/seat otherwise.
An Online Assignment Problem

Need 4 adjacent seats. Value: 100/seat for front row, 80/seat otherwise.
An Online Assignment Problem

Need a single seat.
Value: 1000,
must be a corner.
An Online Assignment Problem

Need a single seat.
Value: 1000,
must be a corner.
An Online Assignment Problem

Value 1 for any single seat.
An Online Assignment Problem

Value 1 for any single seat.
An Online Assignment Problem

Compare $v(\text{Online})$ to $v(\text{Offline}-\text{Opt})$:
An Online Assignment Problem

Compare $v(\text{Online})$ to $v(\text{Offline-Opt})$:

- Worst-case competitive analysis:
 Pointless, even with only a single seat
An Online Assignment Problem

Compare $v(\text{Online})$ to $v(\text{Offline-Opt})$:

- Worst-case competitive analysis:
 Pointless, even with only a single seat

- Random arrival order:
 Generalizes secretary problem
An Online Assignment Problem

Compare $v(\text{Online})$ to $v(\text{Offline-Opt})$:

- Worst-case competitive analysis:
 Pointless, even with only a single seat

- Random arrival order:
 Generalizes secretary problem

- Known distributions:
 Generalizes prophet inequality
The Known Distributions Model

- Valuations are drawn from known independent distributions
 \[\sim D_1 \quad \sim D_2 \quad \sim D_3 \quad \cdots \]

- Compare value of assignment to optimal offline solution

 \[
 \text{competitive ratio} = \min_{\text{distribution } D} \frac{\mathbb{E}_{I \sim D}[\text{ALG}(I)]}{\mathbb{E}_{I \sim D}[\text{OPT}(I)]}
 \]
The Known Distributions Model

- Valuations are drawn from known independent distributions
 \[\sim D_1 \sim D_2 \sim D_3 \cdots \]

- Compare value of assignment to optimal offline solution

 \[
 \text{competitive ratio} = \min_{\text{distribution } D} \frac{\mathbb{E}_{I \sim D}[ALG(I)]}{\mathbb{E}_{I \sim D}[OPT(I)]}
 \]

\textbf{Thm.} [Krengel, Sucheston, Garling 1977]
There is a \(\frac{1}{2} \)-competitive algorithm for the assignment problem with one seat/item.
One Approach: Posted Pricing

Use distributions, to assign a price to each seat.
One Approach: Posted Pricing

Use distributions, to assign a price to each seat.

Each request receives whichever seats maximize $utility = value - price$ among all remaining seats.
One Approach: Posted Pricing

Need 4 adjacent seats.
Value: $100/seat in first row, $80/seat otherwise.
One Approach: Posted Pricing

Need 4 adjacent seats.
Value: $100/seat in first row, $80/seat otherwise
Questions

For a combinatorial allocation problem, given distributions over valuations:

- Is there a **pricing rule** that approximates the expected optimal (offline) total value?
 I.e., that establishes a **prophet inequality**?

- Can we compute these prices **efficiently**?

- Further desiderata: Anonymous, static, item prices
Our Contribution

A framework for prophet inequalities based on posted prices

Key idea: Stochastic Optimization by Pricing Non-Stochastic Inputs

To use framework: Reason only about the (easier) full-information case, where values are known in advance
Our Contribution

<table>
<thead>
<tr>
<th>Feasibility Constraint</th>
<th>Valuation Class</th>
<th>Competitive Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinatorial Auction</td>
<td>XOS</td>
<td>2</td>
</tr>
<tr>
<td>Combinatorial Auction</td>
<td>MPH-(k)</td>
<td>(4k - 2)</td>
</tr>
<tr>
<td>Matroid</td>
<td>Submodular</td>
<td>2 (existential)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 (computational)</td>
</tr>
<tr>
<td>Knapsack</td>
<td>Additive</td>
<td>3</td>
</tr>
<tr>
<td>(d)-Sparse PIPs</td>
<td>Additive</td>
<td>(8d)</td>
</tr>
</tbody>
</table>
Running Example: General Combinatorial Auctions

- Each item can be allocated at most once
- Arbitrary values for sets of up to k items

Thm. [Hazan et al. 2006]
Even offline, lower bound of $\Omega(k / \log k)$, assuming $P = NP$.

The greedy algorithm is an $O(k)$ approximation (for offline problem)

Our goal: An $O(k)$ approximation, via posted prices
Pricing via Dual LP: Does not Work

\[
\text{max } 4x_{1,BC} + 100x_{2,AB} + 100x_{2,AC}
\]
\[
\text{s.t. } x_{2,AB} + x_{2,AC} \leq 1
\]
\[
x_{1,BC} + x_{2,AB} \leq 1
\]
\[
x_{1,BC} + x_{2,AC} \leq 1
\]
Pricing via Dual LP: Does not Work

\[
\begin{align*}
\text{max } & 4x_{1,BC} + 100x_{2,AB} + 100x_{2,AC} \\
\text{s.t. } & x_{2,AB} + x_{2,AC} \leq 1 \\
& x_{1,BC} + x_{2,AB} \leq 1 \\
& x_{1,BC} + x_{2,AC} \leq 1
\end{align*}
\]

- Optimal dual solution sets \(p_A = p_B = p_C = 2 \)
- So buyer 1 buys items B and C
- Value of allocation is 4, where we could have gotten 100
Single-Item Case, Full Information

\[v_1 = 10 \quad v_2 = 30 \quad v_3 = 15 \quad v_4 = 80 \quad v_5 = 5 \]
Single-Item Case, Full Information

\[v_1 = 10 \quad v_2 = 30 \quad v_3 = 15 \quad v_4 = 80 \quad v_5 = 5 \]

Price \(\frac{1}{2} \max_k v_k \) is “balanced”
Single-Item Case, Full Information

Price \(\frac{1}{2} \max_k v_k \) is “balanced”

Let \(v_i = \max_k v_k \)
Single-Item Case, Full Information

Price \(\frac{1}{2} \max_k v_k \) is “balanced”

Let \(v_i = \max_k v_k \)

- **Case 1:** Somebody \(i' < i \) buys item
 \[\Rightarrow \text{revenue} \geq \frac{1}{2} v_i \]
Single-Item Case, Full Information

\[v_1 = 10 \quad v_2 = 30 \quad v_3 = 15 \quad v_4 = 80 \quad v_5 = 5 \]

Price \(\frac{1}{2} \max_k v_k \) is “balanced”

Let \(v_i = \max_k v_k \)

- **Case 1:** Somebody \(i' < i \) buys item
 \[\Rightarrow \text{revenue} \geq \frac{1}{2} v_i \]

- **Case 2:** Nobody \(i' < i \) buys item
 \[\Rightarrow u_i \geq v_i - \frac{1}{2} v_i = \frac{1}{2} v_i \]
Single-Item Case, Full Information

Let $v_i = \max_k v_k$

- **Case 1:** Somebody $i' < i$ buys item
 \[\Rightarrow \text{revenue} \geq \frac{1}{2} v_i \]

- **Case 2:** Nobody $i' < i$ buys item
 \[\Rightarrow u_i \geq v_i - \frac{1}{2} v_i = \frac{1}{2} v_i \]

In either case: welfare = revenue + utilities $\geq \frac{1}{2} v_i$
Extension to Bayesian Setting

Let \(p = \frac{1}{2} \mathbb{E}_{\tilde{\nu} \sim \mathcal{D}}[\max_k \tilde{\nu}_k] \)
Extension to Bayesian Setting

Let \(p = \frac{1}{2} \mathbb{E}_{\tilde{v} \sim \mathcal{D}}[\max_k \tilde{v}_k] \)

Revenue argument:

\[
\mathbb{E}[\text{revenue}] = p \cdot \Pr[\text{somebody buys item}]
\]
Extension to Bayesian Setting

Let \(p = \frac{1}{2} \mathbb{E}_{\tilde{v} \sim \mathcal{D}}[\max_k \tilde{v}_k] \)

Revenue argument:

\[
\mathbb{E}[\text{revenue}] = p \cdot \mathbb{P}[\text{somebody buys item}]
\]

Utility argument:

\[
\mathbb{E}[\text{utilities}] = \sum_i \mathbb{E} \left[(v_i - p)^+ \mathbb{1}_{\text{no } i' < i \text{ buys item}} \right]
\]

\[
= \sum_i \mathbb{E} \left[(v_i - p)^+ \right] \cdot \mathbb{P} \left[\text{no } i' < i \text{ buys item} \right]
\]

\[
\geq \mathbb{E} \left[\max_i (v_i - p)^+ \right] \cdot \mathbb{P} \left[\text{nobody buys item} \right]
\]
Extension to Bayesian Setting

Let $p = \frac{1}{2} E_{\tilde{v} \sim D}[\max_k \tilde{v}_k]$

Revenue argument:

$$E[\text{revenue}] = p \cdot Pr[\text{somebody buys item}]$$

Utility argument:

$$E[\text{utilities}] = \sum_i E[(v_i - p)^+ 1_{\text{no } i' < i \text{ buys item}}]$$

$$= \sum_i E[(v_i - p)^+] \cdot Pr[\text{no } i' < i \text{ buys item}]$$

$$\geq E[\max_i (v_i - p)^+] \cdot Pr[\text{nobody buys item}]$$

By choice of p:

$$E[\text{welfare}] = E[\text{revenue}] + E[\text{utilities}] \geq \frac{1}{2} E[\max_i v_i]$$
Economic Intuition

- Price is **high enough** so that the revenue will offset any sold item’s contribution to the expected optimal value
- Price is **low enough** so that the buyers could have extracted high utility from any items left unsold at the end
Def. [Dütting, Feldman, Kesselheim, Lucier 2017]

A pricing rule p^v is (α, β)-balanced with respect to valuation profile $v = (v_1, \ldots, v_n)$ if for all feasible x and all x' that are feasible “after” x

\[
\begin{align*}
(a) \quad & \sum_i p^v_i(x_i) \geq \frac{1}{\alpha} \left(v(\text{OPT}(v)) - v(\text{OPT}(v | x)) \right) \\
(b) \quad & \sum_i p^v_i(x'_i) \leq \beta v(\text{OPT}(v | x))
\end{align*}
\]

- $v(\text{OPT}(v | x))$: Value that remains after allocating to x
- $v(\text{OPT}(v)) - v(\text{OPT}(v | x))$: Value lost due to allocating to x
Balanced Prices

Def. [Dütting, Feldman, Kesselheim, Lucier 2017]

A pricing rule p^v is \((\alpha, \beta)\)-balanced with respect to valuation profile $v = (v_1, \ldots, v_n)$ if for all feasible x and all x' that are feasible “after” x

\begin{align*}
\text{(a)} \quad \sum_i p^v_i(x_i \mid x_{[i-1]}) & \geq \frac{1}{\alpha} \left(v(\text{OPT}(v)) - v(\text{OPT}(v \mid x)) \right) \\
\text{(b)} \quad \sum_i p^v_i(x'_i \mid x_{[i-1]}) & \leq \beta v(\text{OPT}(v \mid x))
\end{align*}

- $v(\text{OPT}(v \mid x))$: Value that remains after allocating to x
- $v(\text{OPT}(v)) - v(\text{OPT}(v \mid x))$: Value lost due to allocating to x
Balanced Prices

Def. [Dütting, Feldman, Kesselheim, Lucier 2017]

A pricing rule p^v is (α, β)-balanced with respect to valuation profile $v = (v_1, \ldots, v_n)$ if for all feasible x and all x' that are feasible “after” x

(a) $\sum_i p_i^v(x_i | x_{[i-1]}) \geq \frac{1}{\alpha} \left(v(\text{OPT}(v)) - v(\text{OPT}(v | x)) \right)$

(b) $\sum_i p_i^v(x_i' | x_{[i-1]}) \leq \beta v(\text{OPT}(v | x))$

Variant: Weakly balanced prices, replace RHS of second condition with $\beta v(\text{OPT}(v))$
Thm. [Dütting, Feldman, Kesselheim, Lucier 2017]

If \(p^v \) is \((\alpha, \beta)\)-balanced for every \(v \), then setting

\[
p_i(x_i \mid y) = \frac{\alpha}{1 + \alpha \beta} \mathbb{E}_{\tilde{v} \sim \mathcal{D}} \left[p^\tilde{v}_i(x_i \mid y) \right]
\]

achieves welfare at least \(\frac{1}{1 + \alpha \beta} \mathbb{E}[v \ (\text{OPT}(v))] \).
Extension Theorem

Thm. [Dütting, Feldman, Kesselheim, Lucier 2017]

If p^v is (α, β)-balanced for every v, then setting

$$p_i(x_i \mid y) = \frac{\alpha}{1 + \alpha \beta} E_{\tilde{v} \sim D} \left[p_i^\tilde{v}(x_i \mid y) \right]$$

achieves welfare at least $\frac{1}{1 + \alpha \beta} E[v(OPT(v))]$.

Variant: Weakly balanced, then welfare $\geq \frac{1}{4\alpha \beta} \cdot E[v(OPT(v))]$.
Back to Running Example

- Each item can be allocated at most once
- Arbitrary values for sets of up to k items

- Let $x^* = \text{OPT allocation for valuation profile } v$
- Consider prices

$$p_j = \begin{cases}
\frac{1}{|x^*_i|} v_i(x^*_i) & j \text{ is in } x^*_i, \text{ and} \\
0 & \text{otherwise}
\end{cases}$$
Back to Running Example

- Each item can be allocated at most once
- Arbitrary values for sets of up to \(k \) items

- Let \(x^* \) = OPT allocation for valuation profile \(v \)
- Consider prices

\[
p_j = \begin{cases}
\frac{1}{|x_i^*|} v_i(x_i^*) & \text{if } j \text{ is in } x_i^*, \text{ and} \\
0 & \text{otherwise}
\end{cases}
\]
Verifying Balancedness

Claim: These prices are weakly \((k, 1)\)-balanced.
Verifying Balancedness

Claim: These prices are weakly \((k, 1)\)-balanced.

Proof Sketch:

[Prices low enough]:

All item prices sum up to \(v(OPT(v))\).
Verifying Balancedness

Claim: These prices are weakly \((k, 1)\)-balanced.

Proof Sketch:

[Prices low enough]:

All item prices sum up to \(v(\text{OPT}(v))\).

[Prices high enough]:

\(v(\text{OPT}(v | x)) \geq \text{value of sets in } x^* \text{ not touched by } x\)
Verifying Balancedness

Claim: These prices are weakly \((k, 1)\)-balanced.

Proof Sketch:

[Prices low enough]:
All item prices sum up to \(v(OPT(v))\).

[Prices high enough]:
\(v(OPT(v | x)) \geq \text{value of sets in } x^* \text{ not touched by } x\)
\(v(OPT(v)) - v(OPT(v | x)) \leq \text{value of sets in } x^* \text{ touched by } x\)
Verifying Balancedness

Claim: These prices are weakly $(k, 1)$-balanced.

Proof Sketch:

[Prices low enough]:
All item prices sum up to $v(OPT(v))$.

[Prices high enough]:
\[v(OPT(\{v \mid x\})) \geq \text{value of sets in } x^* \text{ not touched by } x \]
\[v(OPT(v)) - v(OPT(\{v \mid x\})) \leq \text{value of sets in } x^* \text{ touched by } x \]

To touch x^*: Price at least \[\frac{1}{|x_i^*|} v_i(x_i^*) \geq \frac{1}{k} v_i(x_i^*) \].
What about Computation?

- If we can compute balanced prices for any fixed input, then we can estimate the average prices by sampling.

 ⇒ Additive ϵ loss, with $POLY(n, m, \frac{1}{\epsilon})$ samples.
What about Computation?

- If we can compute balanced prices for any fixed input, then we can estimate the average prices by sampling.

 ⇒ Additive ϵ loss, with $\text{POLY}(n, m, \frac{1}{\epsilon})$ samples

- To compute prices for any fixed input:
 Use *fractional* solution x^* instead of integral one.
What about Computation?

- If we can compute balanced prices for any fixed input, then we can estimate the average prices by sampling.
 \[\Rightarrow \text{Additive } \epsilon \text{ loss, with } \text{POLY}(n, m, \frac{1}{\epsilon}) \text{ samples} \]

- To compute prices for any fixed input:
 Use \textit{fractional} solution \(x^* \) instead of integral one.
 \[\Rightarrow \text{polytime } O(k)\text{-approximation} \]
Additional Applications

<table>
<thead>
<tr>
<th>Feasibility Constraint</th>
<th>Valuation Class</th>
<th>Competitive Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Combinatorial Auction</td>
<td>XOS</td>
<td>2</td>
</tr>
<tr>
<td>Combinatorial Auction</td>
<td>MPH-k</td>
<td>$4k - 2$</td>
</tr>
<tr>
<td>Matroid</td>
<td>Submodular</td>
<td>2 (existential)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 (computational)</td>
</tr>
<tr>
<td>Knapsack</td>
<td>Additive</td>
<td>3</td>
</tr>
<tr>
<td>d-Sparse PIPs</td>
<td>Additive</td>
<td>$8d$</td>
</tr>
</tbody>
</table>
Further Results

- Composition Theorem:
 Results for simple settings imply results for more complex ones

- Connection to Auction Theory:
 Often Price of Anarchy analyses imply posted price mechanisms with comparable performance
Conclusion

- General framework for pricing and prophet inequalities
- Not all prophet inequalities fit into our framework
 - Can one extend the framework?
 - Do all prophet inequalities have a counterpart in prices?
- What can you do with fewer samples, random order, ...?
Conclusion

- General framework for pricing and prophet inequalities
- Not all prophet inequalities fit into our framework
 - Can one extend the framework?
 - Do all prophet inequalities have a counterpart in prices?
- What can you do with fewer samples, random order, ...?

Thank you! Questions?