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Static and Temporal Graphs

Modern networks are highly dynamic:

Social networks: friendships are added/removed, individuals leave,
new ones enter

Transportation networks: transportation units change with time
their position in the network

Physical systems: e.g. systems of interacting particles

The common characteristic in all these applications:

the graph topology is subject to discrete changes over time

⇒ the notion of vertex adjacency must be appropriately re-defined
(by introducing the time dimension in the graph definition)

Various graph concepts (e.g. reachability, connectivity):

crucially depend on the exact temporal ordering of the edges
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Temporal graphs

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying (di)graph and

λ : E → 2N is a discrete time-labeling function.
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Temporal graphs

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G,λ) where:

G = (V,E) is an underlying (di)graph and

λ : E → 2N is a discrete time-labeling function.

Alternatively, we can view it as a sequence of static graphs, the snapshots:

c

u v

1

c

u v

2

c

u v

3

c

u v

4

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 3 / 39



Example: static vs temporal graphs

From paths to temporal paths:
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Overview

Basic definitions

Temporal vertex cover

Temporal vertex cover with a sliding time window

Open problems
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Basic definitions I

To specify a temporal graph class, we can:

either restrict the underlying graph G,

or restrict the labeling λ : E → 2N (or both)

Definition (Temporal Graph Classes)

For a class X of static graphs we say that a temporal graph (G,λ) is

X temporal, if G ∈ X ;

always X temporal, if Gi ∈ X for every i ∈ [T ] = {1, 2, . . . , T}.

Definition (Temporal Vertex Subset)

A pair (u, t) ∈ V × [T ] is called the appearance of vertex u at time t.
A temporal vertex subset of (G,λ) is a set S ⊆ V × [T ] of vertex
appearances in (G,λ).
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Basic definitions II

Definition (Edge is Temporally Covered)

A vertex appearance (w, t) temporally covers an edge e if:

(i) w covers e, i.e. w ∈ e, and

(ii) t ∈ λ(e), i.e. the edge e is active during the time slot t.

Example:
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– (c, 3) temporally covers edge cv, but

– (c, 3) temporally covers neither cu, nor cw.
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Basic definitions: Temporal Vertex Cover

Definition (Temporal Vertex Cover)

A temporal vertex cover of (G,λ) is a temporal vertex subset S of (G,λ)
such that every edge e ∈ E(G) is temporally covered by at least one
vertex appearance in S.

Example
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– {(c, 2), (c, 3), (c, 8)} is a Temporal Vertex Cover
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– {(c, 2), (c, 3), (c, 8)} is a Temporal Vertex Cover

– {(c, 5)} is a minimum Temporal Vertex Cover
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Basic definitions: Temporal Vertex Cover

Definition (Temporal Vertex Cover)

A temporal vertex cover of (G,λ) is a temporal vertex subset S of (G,λ)
such that every edge e ∈ E(G) is temporally covered by at least one
vertex appearance in S.

Example

c

u v w

1

c

u v w

2

c

u v w

3

c

u v w

4

c

u v w

5

c

u v w

6

c

u v w

7

c

u v w

8

Temporal Vertex Cover (TVC)

Input: A temporal graph (G,λ).
Output: A temporal vertex cover S of (G,λ) with the minimum |S|.
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Basic definitions: Sliding Window Temporal Vertex Cover

Definition (Time Windows)

1 For every time slot t ∈ [1, T −∆ + 1]:
the time window Wt = [t, t+ ∆− 1] is the sequence of the
∆ consecutive time slots t, t+ 1, . . . , t+ ∆− 1.

2 E[Wt] =
⋃

i∈Wt
Ei is the union of all edges appearing at least once in

the time window Wt.

3 S[Wt] = {(w, t) ∈ S : t ∈Wt} is the restriction of the temporal
vertex subset S to the window Wt.
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Basic definitions: Sliding Window Temporal Vertex Cover

Definition (Sliding ∆-Window Temporal Vertex Cover)

A sliding ∆-window temporal vertex cover of (G,λ) is a temporal vertex
subset S of (G,λ) such that:

for every time window Wt and for every edge e ∈ E[Wt],

e is temporally covered by at least one vertex appearance
(w, t) ∈ S[Wt].
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Basic definitions: Sliding Window Temporal Vertex Cover

Example (∆ = 4)
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– {(c, 2), (c, 3), (c, 6), (c, 8)} is not a sliding ∆-window temporal vertex cover,
as edges cv, cw ∈ E[W4] are not temporally covered in window W4.
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– {(c, 1), (c, 5)} is a sliding ∆-window temporal vertex cover.
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Basic definitions: Sliding Window Temporal Vertex Cover

Sliding Window Temporal Vertex Cover (SW-TVC)

Input: A temporal graph (G,λ) with lifetime T , and an integer ∆ ≤ T .
Output: A sliding ∆-window temporal vertex cover S of (G,λ) with the
minimum |S|.
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Overview

Basic definitions

Temporal vertex cover

Temporal vertex cover with a sliding time window

Open problems
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Temporal Vertex Cover: the star temporal case

Lemma

TVC on star temporal graphs is equivalent to Set Cover.

leafs of the underlying star ↔ ground set of the Set Cover instance

each snapshot graph ↔ a set in the Set Cover instance

Goal: Choose sets (snapshots) to cover all elements (leafs’ edges)

Example:
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1 Universe: {u, v, w}
2 Sets: S1 = {u, v, w}, S2 = {u}, S3 = {v}, S4 = {w}, . . .
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Temporal Vertex Cover: the star temporal case

Lemma

TVC on star temporal graphs is equivalent to Set Cover.

Lemma

TVC on star temporal graphs is equivalent to Hitting Set.

Consequences:

1 TVC is NP-complete even on star temporal graphs.
2 For any ε < 1, TVC on star temporal graphs cannot be optimally

solved in O(2εT ) time, unless SETH fails (due to Hitting Set).
3 TVC does not admit a polynomial-time (1− ε) lnn-approximation

algorithm, unless NP has nO(log logn)-time deterministic algorithms.
4 TVC on star temporal graphs can be lnn-approximated in

polynomial time.
5 For general graphs: 2 lnn-approximation algorithm by a similar

reduction from TVC to Set Cover
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Overview

Basic definitions

Alternative models

Temporal vertex cover

Temporal vertex cover with a sliding time window

Open problems
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SW-TVC: always star temporal graphs

1 2 3 4 5 6 7 8

On always star temporal graphs, a minimum size SW-TVC contains at
most one vertex (the star center) in each snapshot

⇒ we assign a Boolean variable xi ∈ {0, 1} for the snapshot at time i

For variables x1, x2, . . . , x∆ we define f(t;x1, x2, . . . , x∆) to be the
smallest cardinality of a sliding ∆-window temporal vertex cover S of
(G,λ)|[1,t+∆−1], such that the solution at times t, t+ 1, . . . , t+ ∆− 1
is defined by the variables x1, x2, . . . , x∆.

Lemma (dynamic programming)

f(t;x1, x2, . . . , x∆) = x∆ + min
y∈{0,1}

{f(t− 1; y, x1, x2, . . . , x∆−1)}
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For variables x1, x2, . . . , x∆ we define f(t;x1, x2, . . . , x∆) to be the
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is defined by the variables x1, x2, . . . , x∆.

Lemma (dynamic programming)
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SW-TVC: always star temporal graphs

Theorem

SW-TVC on always star temporal graphs can be solved in
O(T∆(n+m) · 2∆) time.

Algorithm SW-TVC on always star temporal graphs

Input: An always star temporal graph (G,λ) with lifetime T and a natural ∆ ≤ T .
Output: The cardinality of a minimum sliding ∆-window temporal vertex cover in (G,λ).

for t = 1 to T −∆ + 1 do
for all x1, x2, . . . , x∆ ∈ {0, 1} do

if {(ct+i−1, t+ i− 1) | xi = 1} is a TVC of (G,λ)|[t,t+∆−1] then
if t = 1 then

f(t;x1, . . . , x∆)←
∑∆

i=1 xi
else

f(t;x1, . . . , x∆)← x∆ + miny∈{0,1} {f(t− 1; y, x1, . . . , x∆−1)}
else

f(t;x1, . . . , x∆)←∞
return minx1,...,x∆∈{0,1} {f(T −∆ + 1;x1, . . . , x∆)}
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SW-TVC: the general case

Theorem

SW-TVC on general temporal graphs can be solved in
O(T∆(n+m) · 2n(∆+1)) time.

Algorithm SW-TVC on general temporal graphs

Input: A temporal graph (G,λ) with lifetime T and a natural ∆ ≤ T .
Output: The smallest cardinality of a sliding ∆-window temporal vertex cover in (G,λ).

1: for t = 1 to T −∆ + 1 do
2: for all A1, A2, . . . , A∆ ⊆ V do

3: if
⋃∆

i=1(Ai, t+ i− 1) is a TVC of (G,λ)|[t,t+∆−1] then
4: if t = 1 then
5: f(t;A1, . . . , A∆)←

∑∆
i=1 |Ai|

6: else
7: f(t;A1, . . . , A∆)← |A∆|+ minX⊆V {f(t− 1;X,A1, . . . , A∆−1)}
8: else
9: f(t;A1, . . . , A∆)←∞

return minA1,...,A∆⊆V {f(T −∆ + 1;A1, . . . , A∆)}
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Main idea:
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SW-TVC: Optimality under ETH

Theorem

For any two (arbitrarily growing) functions f : N→ N and g : N→ N,
there exists a constant ε ∈ (0, 1) such that SW-TVC cannot be solved in
f(T ) · 2εn·g(∆) time assuming ETH.

Proof (idea):

reduction from Vertex Cover

T = ∆ = 2

G1 = G; G2 is an independent set

given f and g, choose appropriate ε

Corollary

Our O(T∆(n+m) · 2n(∆+1))-time algorithm is asymptotically almost
optimal.
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SW-TVC: always bounded vertex cover number temporal graphs

Let Ck be the class of graphs with the vertex cover number at most k.

Theorem

SW-TVC on always Ck temporal graphs can be solved in
O(T∆(n+m) · nk(∆+1)) time.

Main idea:

in the optimal solution, the choice at step i is a subset of a minimum
vertex cover at this snapshot

⇒ for each of the ∆ last snapshots, enumerate all nk vertex subsets
(candidates for vertex cover at snapshot i)
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∆-TVC

If the parameter ∆ (the size of a sliding window) is fixed, we refer to
SW-TVC as ∆-TVC (i.e. ∆ is a part of the problem name).

Observation

(∆ + 1)-TVC is at least as hard as ∆-TVC.

t = 1 t = 2 t = ∆

t = ∆ + 1

t = ∆ + 2

G1 G2
. . . G∆ ∅ G∆+1 . . . ∅G2∆

t = 2∆ + 1

t = 2∆ + 2

. . . . . . . . .

t = T + b T
∆
c

. . .
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2-TVC is hard to approximate

Let X be the class of graphs whose connected components are induced
subgraphs of graph Ψ.

Ψ

Clearly, Vertex Cover is linearly solvable on graphs from X .

Theorem

There is no PTAS for 2-TVC on always X temporal graphs.
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2-TVC is hard to approximate

Theorem

There is no PTAS for 2-TVC on always X temporal graphs.

Proof (sketch):
1 Let Y be the class of graphs which can be obtained from cubic graphs

by subdividing every edge exactly 4 times.
2 There is no PTAS for Vertex Cover on Y.
3 Reduce Vertex Cover on Y to 2-TVC on always X temporal

graphs such that optimal solutions of both problems have same size.

K4 The 4-subdivision of K4 Snapshot G1 Snapshot G2

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 24 / 39



SW-TVC: approximation algorithms I

Reduction from SW-TVC to Set Cover.

1 The universe: the set of all pairs (e, t) ∈ E × [T −∆ + 1] such that e
appears (and so must be temporally covered) within window Wt.

2 The sets: for every vertex appearance (v, s) we define Cv,s to be the
set of elements (e, t) in the universe, such that (v, s) temporally
covers e in window Wt.

Consequences:

1 O(lnn+ ln ∆)-approximation
(every set Cv,s has at most n∆ elements
⇒ approximation factor Hn∆ − 1

2 ≈ lnn+ ln ∆)

2 2k-approximation, where k is the maximum edge ∆-frequency
(just take both vertex appearances for every appearance of an edge)

⇒ 2∆-approximation
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SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 26 / 39



SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 26 / 39



SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 26 / 39



SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 27 / 39



SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 28 / 39



SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 29 / 39



SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 29 / 39



SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 30 / 39



SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

1 2 3 4 5 6 7 8

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 31 / 39



SW-TVC: approximation algorithms II

Single-edge temporal graph: exact algorithm

Algorithm SW-TVC on single-edge temporal graphs

Input: A temporal graph (G,λ) of lifetime T with V (G) = {u, v}; and ∆ ≤ T .
Output: A minimum-cardinality sliding ∆-window temporal vertex cover S of (G,λ).
1: S ← ∅
2: t = 1
3: while t ≤ T −∆ + 1 do
4: if ∃ r ∈ [t, t+ ∆− 1] such that uv ∈ Er then
5: choose maximum such r and add (u, r) to S
6: t← r + 1
7: else
8: t← t+ 1

return S

greedy algorithm

linear time

George B. Mertzios Temporal Vertex Cover AlgoUK Liverpool, Sept. 2018 32 / 39



SW-TVC: approximation algorithms II

Always degree at most d temporal graphs: d-approx. algorithm

Main idea:

solve independently each single-edge subgraph of G

take the union of the solutions
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SW-TVC: approximation algorithms II

Always degree at most d temporal graphs: d-approx. algorithm
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SW-TVC: approximation algorithms II

Always degree at most d temporal graphs: d-approx. algorithm

Algorithm d-approximation of SW-TVC on always degree at most d temporal graphs

Input: An always degree at most d temporal graph (G,λ) of lifetime T , and ∆ ≤ T .
Output: A sliding ∆-window temporal vertex cover S of (G,λ).
1: for every edge uv ∈ E(G) do
2: Compute an optimal solution Suv of the problem for (G[{u, v}], λ)]
3: S ← S ∪ Suv

return S

Lemma

The above algorithm is a O (mT )-time d-approximation algorithm for
SW-TVC on always degree at most d temporal graphs.

Corollary

SW-TVC can be optimally solved in O(mT ) time on the class of
always degree at most 1 (matching) temporal graphs.
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Output: A sliding ∆-window temporal vertex cover S of (G,λ).
1: for every edge uv ∈ E(G) do
2: Compute an optimal solution Suv of the problem for (G[{u, v}], λ)]
3: S ← S ∪ Suv

return S

Lemma

The above algorithm is a O (mT )-time d-approximation algorithm for
SW-TVC on always degree at most d temporal graphs.

Corollary

SW-TVC can be optimally solved in O(mT ) time on the class of
always degree at most 1 (matching) temporal graphs.
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Open Problems

Problem 1

Determine the complexity status of ∆-TVC on degree at most 2 temporal
graphs.

1 ∆-TVC on always degree at most 1 can be solved in linear time.

2 ∆-TVC on always degree at most 3: no PTAS, even when:
1 the underlying graph has degree at most 3; and
2 connected components of snapshots have at most 7 vertices.

Problem 2

Can ∆-TVC on general graphs be approximated within a factor better
than 2∆?

Problem 3

Can ∆-TVC on always degree at most d temporal graphs be
approximated within a factor better than d?
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Thank you!
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