Temporal Vertex Cover with a Sliding Time Window

George B. Mertzios Durham University

These results have been presented in ICALP 2018

Joint work with:

Eleni C. Akrida, University of Liverpool, Paul G. Spirakis, University of Liverpool, Viktor Zamaraev, Durham University

AlgoUK, University of Liverpool September 2018 Modern networks are highly dynamic:

- Social networks: friendships are added/removed, individuals leave, new ones enter
- Transportation networks: transportation units change with time their position in the network
- Physical systems: e.g. systems of interacting particles
- The common characteristic in all these applications:
 - the graph topology is subject to discrete changes over time
 - ⇒ the notion of vertex adjacency must be appropriately re-defined (by introducing the time dimension in the graph definition)

Various graph concepts (e.g. reachability, connectivity):

• crucially depend on the exact temporal ordering of the edges

2 / 39

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

AlgoUK Liverpool, Sept. 2018

3 / 39

0

Temporal Vertex Cover

George B. Mertzios

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

temporal instances:

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

temporal instances:

0

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

temporal instances:

0

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

temporal graph:

temporal instances:

Formally:

Definition (Temporal Graph)

A temporal graph is a pair (G, λ) where:

- G = (V, E) is an underlying (di)graph and
- $\lambda: E \to 2^{\mathbb{N}}$ is a discrete time-labeling function.

Alternatively, we can view it as a sequence of static graphs, the snapshots:

Basic definitions

- Temporal vertex cover
- Temporal vertex cover with a sliding time window
- Open problems

Basic definitions I

To specify a temporal graph class, we can:

- either restrict the underlying graph G,
- or restrict the labeling $\lambda: E \to 2^{\mathbb{N}}$ (or both)

Basic definitions I

To specify a temporal graph class, we can:

- either restrict the underlying graph G,
- or restrict the labeling $\lambda: E \to 2^{\mathbb{N}}$ (or both)

Definition (Temporal Graph Classes)

For a class \mathcal{X} of static graphs we say that a temporal graph (G, λ) is

- \mathcal{X} temporal, if $G \in \mathcal{X}$;
- always \mathcal{X} temporal, if $G_i \in \mathcal{X}$ for every $i \in [T] = \{1, 2, \dots, T\}$.

Basic definitions I

To specify a temporal graph class, we can:

- either restrict the underlying graph G,
- or restrict the labeling $\lambda: E \to 2^{\mathbb{N}}$ (or both)

Definition (Temporal Graph Classes)

For a class \mathcal{X} of static graphs we say that a temporal graph (G, λ) is

- \mathcal{X} temporal, if $G \in \mathcal{X}$;
- always \mathcal{X} temporal, if $G_i \in \mathcal{X}$ for every $i \in [T] = \{1, 2, \dots, T\}$.

Definition (Temporal Vertex Subset)

A pair $(u,t) \in V \times [T]$ is called the appearance of vertex u at time t. A temporal vertex subset of (G, λ) is a set $S \subseteq V \times [T]$ of vertex appearances in (G, λ) .

George B. Mertzios

Basic definitions II

Definition (Edge is Temporally Covered)

A vertex appearance (w, t) temporally covers an edge e if:

(i) w covers e, i.e. $w \in e$, and

(ii) $t \in \lambda(e)$, i.e. the edge e is active during the time slot t.

Basic definitions II

Definition (Edge is Temporally Covered)

A vertex appearance (w, t) temporally covers an edge e if:

```
(i) w covers e, i.e. w \in e, and
```

(ii) $t \in \lambda(e)$, i.e. the edge e is active during the time slot t.

Example:

- (c,3) temporally covers edge cv, but
- -(c,3) temporally covers neither cu, nor cw.

Definition (Temporal Vertex Cover)

A temporal vertex cover of (G, λ) is a temporal vertex subset S of (G, λ) such that every edge $e \in E(G)$ is temporally covered by at least one vertex appearance in S.

Basic definitions: Temporal Vertex Cover

Definition (Temporal Vertex Cover)

A temporal vertex cover of (G, λ) is a temporal vertex subset S of (G, λ) such that every edge $e \in E(G)$ is temporally covered by at least one vertex appearance in S.

Example

- $\{(c,2), (c,3), (c,8)\}$ is a Temporal Vertex Cover

Definition (Temporal Vertex Cover)

A temporal vertex cover of (G, λ) is a temporal vertex subset S of (G, λ) such that every edge $e \in E(G)$ is temporally covered by at least one vertex appearance in S.

Example

- $\{(c, 2), (c, 3), (c, 8)\}$ is a Temporal Vertex Cover

 $- \{(c, 5)\}$ is a minimum Temporal Vertex Cover

Basic definitions: Temporal Vertex Cover

Definition (Temporal Vertex Cover)

A temporal vertex cover of (G, λ) is a temporal vertex subset S of (G, λ) such that every edge $e \in E(G)$ is temporally covered by at least one vertex appearance in S.

Example

TEMPORAL VERTEX COVER (TVC)

Input: A temporal graph (G, λ) .

Output: A temporal vertex cover S of (G, λ) with the minimum |S|.

8 / 39

Definition (Time Windows)

• For every time slot $t \in [1, T - \Delta + 1]$: the time window $W_t = [t, t + \Delta - 1]$ is the sequence of the Δ consecutive time slots $t, t + 1, \ldots, t + \Delta - 1$.

Definition (Time Windows)

- For every time slot $t \in [1, T \Delta + 1]$: the time window $W_t = [t, t + \Delta - 1]$ is the sequence of the Δ consecutive time slots $t, t + 1, \dots, t + \Delta - 1$.
- ② $E[W_t] = \bigcup_{i \in W_t} E_i$ is the union of all edges appearing at least once in the time window W_t .

Definition (Time Windows)

- For every time slot $t \in [1, T \Delta + 1]$: the time window $W_t = [t, t + \Delta - 1]$ is the sequence of the Δ consecutive time slots $t, t + 1, \dots, t + \Delta - 1$.
- 2 $E[W_t] = \bigcup_{i \in W_t} E_i$ is the union of all edges appearing at least once in the time window W_t .
- S[W_t] = {(w,t) ∈ S : t ∈ W_t} is the restriction of the temporal vertex subset S to the window W_t.

Definition (Sliding Δ -Window Temporal Vertex Cover)

A sliding Δ -window temporal vertex cover of (G, λ) is a temporal vertex subset S of (G, λ) such that:

- for every time window W_t and for every edge $e \in E[W_t]$,
- e is temporally covered by at least one vertex appearance $(w,t) \in \mathcal{S}[W_t]$.

Example $(\Delta = 4)$

- $\{(c,2), (c,3), (c,6), (c,8)\}$ is not a sliding Δ -window temporal vertex cover, as edges $cv, cw \in E[W_4]$ are not temporally covered in window W_4 .

Example $(\Delta = 4)$

- $\{(c, 2), (c, 3), (c, 6), (c, 8)\}$ is not a sliding Δ -window temporal vertex cover, as edges $cv, cw \in E[W_4]$ are not temporally covered in window W_4 .

- $\{(c, 1), (c, 5)\}$ is a sliding Δ -window temporal vertex cover.

George B. Mertzios

SLIDING WINDOW TEMPORAL VERTEX COVER (SW-TVC)

Input: A temporal graph (G, λ) with lifetime T, and an integer $\Delta \leq T$. **Output:** A sliding Δ -window temporal vertex cover S of (G, λ) with the minimum |S|.

- Basic definitions
- Temporal vertex cover
- Temporal vertex cover with a sliding time window
- Open problems

Lemma

TVC on star temporal graphs is equivalent to SET COVER.

- \bullet leafs of the underlying star \leftrightarrow ground set of the SET COVER instance
- \bullet each snapshot graph \leftrightarrow a set in the SET COVER instance
- Goal: Choose sets (snapshots) to cover all elements (leafs' edges)

Example:

Lemma

TVC on star temporal graphs is equivalent to SET COVER.

- \bullet leafs of the underlying star \leftrightarrow ground set of the SET COVER instance
- \bullet each snapshot graph \leftrightarrow a set in the SET COVER instance
- Goal: Choose sets (snapshots) to cover all elements (leafs' edges)

Example:

1 Universe: $\{u, v, w\}$

2 Sets: $S_1 = \{u, v, w\}$, $S_2 = \{u\}$, $S_3 = \{v\}$, $S_4 = \{w\}$, ...

Lemma

TVC on star temporal graphs is equivalent to SET COVER.

Lemma

TVC on star temporal graphs is equivalent to HITTING SET.

Lemma

TVC on star temporal graphs is equivalent to SET COVER.

Lemma

TVC on star temporal graphs is equivalent to HITTING SET.

Consequences:

- **1 TVC** is NP-complete even on star temporal graphs.
- Provide For any ε < 1, TVC on star temporal graphs cannot be optimally solved in O(2^{εT}) time, unless SETH fails (due to Hitting Set).

Lemma

TVC on star temporal graphs is equivalent to SET COVER.

Lemma

TVC on star temporal graphs is equivalent to HITTING SET.

Consequences:

- **1** TVC is NP-complete even on star temporal graphs.
- For any ε < 1, TVC on star temporal graphs cannot be optimally solved in O(2^{εT}) time, unless SETH fails (due to Hitting Set).
- **3** TVC does not admit a polynomial-time $(1 \varepsilon) \ln n$ -approximation algorithm, unless NP has $n^{O(\log \log n)}$ -time deterministic algorithms.
Temporal Vertex Cover: the star temporal case

Lemma

TVC on star temporal graphs is equivalent to SET COVER.

Lemma

TVC on star temporal graphs is equivalent to HITTING SET.

Consequences:

- **1** TVC is NP-complete even on star temporal graphs.
- For any ε < 1, TVC on star temporal graphs cannot be optimally solved in O(2^{εT}) time, unless SETH fails (due to Hitting Set).
- ③ TVC does not admit a polynomial-time (1 − ε) ln n-approximation algorithm, unless NP has n^{O(log log n)}-time deterministic algorithms.
- TVC on star temporal graphs can be ln n-approximated in polynomial time.
- For general graphs: $2 \ln n$ -approximation algorithm by a similar reduction from TVC to SET COVER

George B. Mertzios

Temporal Vertex Cover

- Basic definitions
- Alternative models
- Temporal vertex cover
- Temporal vertex cover with a sliding time window
- Open problems

 On always star temporal graphs, a minimum size SW-TVC contains at most one vertex (the star center) in each snapshot

 $\Rightarrow\,$ we assign a Boolean variable $x_i\in\{0,1\}$ for the snapshot at time i

- On always star temporal graphs, a minimum size SW-TVC contains at most one vertex (the star center) in each snapshot
- \Rightarrow we assign a Boolean variable $x_i \in \{0,1\}$ for the snapshot at time i
 - For variables x₁, x₂,..., x_Δ we define f(t; x₁, x₂,..., x_Δ) to be the smallest cardinality of a sliding Δ-window temporal vertex cover S of (G, λ)|_[1,t+Δ-1], such that the solution at times t, t + 1,...,t + Δ − 1 is defined by the variables x₁, x₂,..., x_Δ.

f(**6**; **1**, **0**, **1**)

 On always star temporal graphs, a minimum size SW-TVC contains at most one vertex (the star center) in each snapshot

 $\Rightarrow\,$ we assign a Boolean variable $x_i\in\{0,1\}$ for the snapshot at time i

• For variables $x_1, x_2, \ldots, x_\Delta$ we define $f(t; x_1, x_2, \ldots, x_\Delta)$ to be the smallest cardinality of a sliding Δ -window temporal vertex cover S of $(G, \lambda)|_{[1,t+\Delta-1]}$, such that the solution at times $t, t+1, \ldots, t+\Delta-1$ is defined by the variables $x_1, x_2, \ldots, x_\Delta$.

f(**6**; **1**, **0**, **1**)

- On always star temporal graphs, a minimum size SW-TVC contains at most one vertex (the star center) in each snapshot
- $\Rightarrow\,$ we assign a Boolean variable $x_i\in\{0,1\}$ for the snapshot at time i
 - For variables x₁, x₂,..., x_Δ we define f(t; x₁, x₂,..., x_Δ) to be the smallest cardinality of a sliding Δ-window temporal vertex cover S of (G, λ)|_[1,t+Δ-1], such that the solution at times t, t + 1,...,t + Δ − 1 is defined by the variables x₁, x₂,..., x_Δ.

Lemma (dynamic programming)

$$f(t; x_1, x_2, \dots, x_{\Delta}) = x_{\Delta} + \min_{y \in \{0, 1\}} \{ f(t-1; y, x_1, x_2, \dots, x_{\Delta-1}) \}$$

George B. Mertzios

$\operatorname{SW-TVC}$: always star temporal graphs

Theorem

SW-TVC on always star temporal graphs can be solved in $O(T\Delta(n+m) \cdot 2^{\Delta})$ time.

SW-TVC on always star temporal graphs can be solved in $O(T\Delta(n+m) \cdot 2^{\Delta})$ time.

Algorithm $\operatorname{SW-TVC}$ on always star temporal graphs

Input: An always star temporal graph (G, λ) with lifetime T and a natural $\Delta \leq T$. **Output:** The cardinality of a minimum sliding Δ -window temporal vertex cover in (G, λ) .

for
$$t = 1$$
 to $T - \Delta + 1$ do
for all $x_1, x_2, \dots, x_\Delta \in \{0, 1\}$ do
if $\{(c_{t+i-1}, t+i-1) \mid x_i = 1\}$ is a TVC of $(G, \lambda)|_{[t,t+\Delta-1]}$ then
if $t = 1$ then
 $f(t; x_1, \dots, x_\Delta) \leftarrow \sum_{i=1}^{\Delta} x_i$
else
 $f(t; x_1, \dots, x_\Delta) \leftarrow x_\Delta + \min_{y \in \{0,1\}} \{f(t-1; y, x_1, \dots, x_{\Delta-1})\}$
else
 $f(t; x_1, \dots, x_\Delta) \leftarrow \infty$
return $\min_{x_1, \dots, x_\Delta \in \{0,1\}} \{f(T - \Delta + 1; x_1, \dots, x_\Delta)\}$

$\operatorname{SW-TVC}$: the general case

Theorem

SW-TVC on general temporal graphs can be solved in $O(T\Delta(n+m) \cdot 2^{n(\Delta+1)})$ time.

$\operatorname{SW-TVC}$: the general case

Theorem

SW-TVC on general temporal graphs can be solved in $O(T\Delta(n+m)\cdot 2^{n(\Delta+1)})$ time.

Main idea:

- for each of the Δ snapshots in the (currently) last $\Delta\text{-window},$ we enumerate all 2^n vertex subsets,
- instead of just enumerating over the truth values of Δ Boolean variables ("always star" case)

$\operatorname{SW-TVC}$: the general case

Theorem

SW-TVC on general temporal graphs can be solved in $O(T\Delta(n+m) \cdot 2^{n(\Delta+1)})$ time.

Algorithm $\operatorname{SW-TVC}$ on general temporal graphs

Input: A temporal graph (G, λ) with lifetime T and a natural $\Delta \leq T$. **Output:** The smallest cardinality of a sliding Δ -window temporal vertex cover in (G, λ) .

1: for
$$t = 1$$
 to $T - \Delta + 1$ do
2: for all $A_1, A_2, \dots, A_\Delta \subseteq V$ do
3: if $\bigcup_{i=1}^{\Delta} (A_i, t + i - 1)$ is a TVC of $(G, \lambda)|_{[t,t+\Delta-1]}$ then
4: if $t = 1$ then
5: $f(t; A_1, \dots, A_\Delta) \leftarrow \sum_{i=1}^{\Delta} |A_i|$
6: else
7: $f(t; A_1, \dots, A_\Delta) \leftarrow |A_\Delta| + \min_{X \subseteq V} \{f(t - 1; X, A_1, \dots, A_{\Delta-1})\}$
8: else
9: $f(t; A_1, \dots, A_\Delta) \leftarrow \infty$
return $\min_{A_1, \dots, A_\Delta \subseteq V} \{f(T - \Delta + 1; A_1, \dots, A_\Delta)\}$

For any two (arbitrarily growing) functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$, there exists a constant $\varepsilon \in (0, 1)$ such that SW-TVC cannot be solved in $f(T) \cdot 2^{\varepsilon n \cdot g(\Delta)}$ time assuming ETH.

For any two (arbitrarily growing) functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$, there exists a constant $\varepsilon \in (0, 1)$ such that SW-TVC cannot be solved in $f(T) \cdot 2^{\varepsilon n \cdot g(\Delta)}$ time assuming ETH.

Proof (idea):

- reduction from VERTEX COVER
- $T = \Delta = 2$
- $G_1 = G$; G_2 is an independent set
- given f and g, choose appropriate ε

For any two (arbitrarily growing) functions $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$, there exists a constant $\varepsilon \in (0, 1)$ such that SW-TVC cannot be solved in $f(T) \cdot 2^{\varepsilon n \cdot g(\Delta)}$ time assuming ETH.

Proof (idea):

- reduction from VERTEX COVER
- $T = \Delta = 2$
- $G_1 = G$; G_2 is an independent set
- given f and g, choose appropriate ε

Corollary

Our $O(T\Delta(n+m)\cdot 2^{n(\Delta+1)})$ -time algorithm is asymptotically almost optimal.

SW-TVC: always bounded vertex cover number temporal graphs

Let C_k be the class of graphs with the vertex cover number at most k.

Theorem

SW-TVC on always C_k temporal graphs can be solved in $O(T\Delta(n+m) \cdot n^{k(\Delta+1)})$ time.

SW-TVC: always bounded vertex cover number temporal graphs

Let C_k be the class of graphs with the vertex cover number at most k.

Theorem

SW-TVC on always C_k temporal graphs can be solved in $O(T\Delta(n+m) \cdot n^{k(\Delta+1)})$ time.

Main idea:

- in the optimal solution, the choice at step *i* is a subset of a minimum vertex cover at this snapshot
- \Rightarrow for each of the Δ last snapshots, enumerate all n^k vertex subsets (candidates for vertex cover at snapshot i)

Δ -TVC

If the parameter Δ (the size of a sliding window) is fixed, we refer to SW-TVC as Δ -TVC (i.e. Δ is a part of the problem name).

Δ -TVC

If the parameter Δ (the size of a sliding window) is fixed, we refer to SW-TVC as Δ -TVC (i.e. Δ is a part of the problem name).

Observation

 $(\Delta + 1)$ -TVC is at least as hard as Δ -TVC.

Δ -TVC

If the parameter Δ (the size of a sliding window) is fixed, we refer to SW-TVC as Δ -TVC (i.e. Δ is a part of the problem name).

Observation

 $(\Delta + 1)$ -TVC is at least as hard as Δ -TVC.

Let \mathcal{X} be the class of graphs whose connected components are induced subgraphs of graph Ψ .

Let \mathcal{X} be the class of graphs whose connected components are induced subgraphs of graph Ψ .

Clearly, VERTEX COVER is linearly solvable on graphs from \mathcal{X} .

Let \mathcal{X} be the class of graphs whose connected components are induced subgraphs of graph Ψ .

Clearly, VERTEX COVER is linearly solvable on graphs from \mathcal{X} .

Theorem There is no PTAS for 2-TVC on always \mathcal{X} temporal graphs.

George B. Mertzios

Temporal Vertex Cover

Theorem

There is no PTAS for 2-TVC on always \mathcal{X} temporal graphs.

Proof (sketch):

- Let Y be the class of graphs which can be obtained from cubic graphs by subdividing every edge exactly 4 times.
- **2** There is no PTAS for VERTEX COVER on \mathcal{Y} .
- Seduce VERTEX COVER on \mathcal{Y} to 2-TVC on always \mathcal{X} temporal graphs such that optimal solutions of both problems have same size.

Reduction from SW-TVC to SET COVER.

Reduction from $\operatorname{SW-TVC}$ to Set Cover.

• The universe: the set of all pairs $(e,t) \in E \times [T - \Delta + 1]$ such that e appears (and so must be temporally covered) within window W_t .

Reduction from $\operatorname{SW-TVC}$ to Set Cover.

- The universe: the set of all pairs $(e,t) \in E \times [T \Delta + 1]$ such that e appears (and so must be temporally covered) within window W_t .
- **2** The sets: for every vertex appearance (v, s) we define $C_{v,s}$ to be the set of elements (e, t) in the universe, such that (v, s) temporally covers e in window W_t .

Reduction from SW-TVC to SET COVER.

- The universe: the set of all pairs $(e,t) \in E \times [T \Delta + 1]$ such that e appears (and so must be temporally covered) within window W_t .
- **2** The sets: for every vertex appearance (v, s) we define $C_{v,s}$ to be the set of elements (e, t) in the universe, such that (v, s) temporally covers e in window W_t .

Consequences:

• $O(\ln n + \ln \Delta)$ -approximation (every set $C_{v,s}$ has at most $n\Delta$ elements \Rightarrow approximation factor $H_{n\Delta} - \frac{1}{2} \approx \ln n + \ln \Delta$)

Reduction from SW-TVC to SET COVER.

- The universe: the set of all pairs $(e,t) \in E \times [T \Delta + 1]$ such that e appears (and so must be temporally covered) within window W_t .
- **2** The sets: for every vertex appearance (v, s) we define $C_{v,s}$ to be the set of elements (e, t) in the universe, such that (v, s) temporally covers e in window W_t .

Consequences:

- O(ln n + ln Δ)-approximation (every set C_{v,s} has at most nΔ elements ⇒ approximation factor H_{nΔ} - ¹/₂ ≈ ln n + ln Δ)
- 2k-approximation, where k is the maximum edge Δ-frequency (just take both vertex appearances for every appearance of an edge)

Reduction from SW-TVC to SET COVER.

- The universe: the set of all pairs $(e,t) \in E \times [T \Delta + 1]$ such that e appears (and so must be temporally covered) within window W_t .
- **2** The sets: for every vertex appearance (v, s) we define $C_{v,s}$ to be the set of elements (e, t) in the universe, such that (v, s) temporally covers e in window W_t .

Consequences:

- $O(\ln n + \ln \Delta)$ -approximation (every set $C_{v,s}$ has at most $n\Delta$ elements \Rightarrow approximation factor $H_{n\Delta} - \frac{1}{2} \approx \ln n + \ln \Delta$)
- 2k-approximation, where k is the maximum edge Δ-frequency (just take both vertex appearances for every appearance of an edge)
- $\Rightarrow 2\Delta$ -approximation

$\operatorname{SW-TVC}$: approximation algorithms II

Single-edge temporal graph: exact algorithm

$\operatorname{SW-TVC}$: approximation algorithms II

Single-edge temporal graph: exact algorithm

Single-edge temporal graph: exact algorithm

Algorithm SW-TVC on single-edge temporal graphs

```
Input: A temporal graph (G, \lambda) of lifetime T with V(G) = \{u, v\}; and \Delta \leq T.
Output: A minimum-cardinality sliding \Delta-window temporal vertex cover S of (G, \lambda).
 1: \mathcal{S} \leftarrow \emptyset
 2: t = 1
 3: while t \leq T - \Delta + 1 do
         if \exists r \in [t, t + \Delta - 1] such that uv \in E_r then
 4:
 5:
              choose maximum such r and add (u, r) to S
 6:
              t \leftarrow r+1
 7:
     else
 8.
              t \leftarrow t + 1
     return S
```

- greedy algorithm
- linear time

Always degree at most *d* temporal graphs: *d*-approx. algorithm

Main idea:

- solve independently each single-edge subgraph of G
- take the union of the solutions

		0	0		م ٥	0	0 0—	0 —0	ļ	0 0	$\sum_{i=1}^{n}$		
1		2 3		3	4		5		6		7	8	
<u>م</u> د	0	0	0	0	٩	0	0	0	0	0	٩ ٥	٩ ٥	
0 0	0	0	0	0	0	S	0	0	0	0	0 0	0 0	

Ŷ	0	¢	0	0		م ٥	0	0 0—	0 —0		0 0		 	م ا	ليك الك
	1	2	2		3	4	4	ļ	5	(6	,	7	8	8
٩	0	0	0	0	0	م	0	0	0	0	0	م	0	م	0
0	6	0	0	0	0	0	<u>></u>	0	0	0	0	0	S	0	ò
9	0	Ŷ	0	0	0	0	0	0	0	9	0	Ŷ	0	0	0
	0	0	0	0	0	0	0	0	0		0	0	0	0	0

Ŷ	0	0	<u>о</u> 0	0		م ٥	0	0 0—	0 —0		0 0		 	م م	
	1	2	2		3	4	4		5	(6	,	7	. 8	3
٩	0	0	0	0	0	٩	0	0	0	0	0	م	0	م	0
0	6	0	0	0	0	0	6	0	0	0	0	0	S	0	<u>></u>
9	0	9	0	0	0	0	0	0	0	9	0	9	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	<u>^</u>	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Always degree at most *d* temporal graphs: *d*-approx. algorithm

	0	°	∕° ∘	0		م ٥	0	0 0—	0 0		0 0		 	م م	ار الم
	1	2		3		4			5		3	7		8	
٩	0	0	0	0	0	٩	0	0	0	0	0	٩	0	م	0
0	6	0	0	0	0	0	<u>></u>	0	0	0	0	0	ò	0	ò
9	0	Ŷ	0	0	0	0	0	0	0	9	0	9	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	$^{\circ}$	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	Ŷ	0	0	0	0	0	0	0	0	0	Ŷ
0	0	0	0	0	ļ	0	0	0	0	0	0	0	0	0	0

. . .

George B. Mertzios

Always degree at most *d* temporal graphs: *d*-approx. algorithm

¢	0	°,	_^ ₀	0	-0	م ٥	0	0 0	0 0		0 0		 	6	²
	1		2	3		4			5		3	7		8	
٩	0	0	0	0	0	٩	0	0	0	0	0	٩	0	م	0
0	•	0	0	0	0	0	•	0	0	0	0	0	•	0	ò
9	0	Ŷ	0	0	0	0	0	0	0	9	0	9	0	0	0
6	0		0	0	0	0	0	0	0		0	0	0	0	0
0	0	0	~	0	0	0	0	0	0	0	0	0	0	0	0
0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	Ŷ	0	0	0	0	0	0	0	0	0	Ŷ
0	0	0	0	0	•	0	0	0	0	0	0	0	0	0	•

. . .

George B. Mertzios

Always degree at most *d* temporal graphs: *d*-approx. algorithm

Algorithm *d*-approximation of **SW-TVC** on always degree at most *d* temporal graphs

Input: An always degree at most d temporal graph (G, λ) of lifetime T, and $\Delta \leq T$. **Output:** A sliding Δ -window temporal vertex cover S of (G, λ) .

- 1: for every edge $uv \in E(G)$ do
- 2: Compute an optimal solution S_{uv} of the problem for $(G[\{u, v\}], \lambda)]$
- 3: $S \leftarrow S \cup S_{uv}$

return S

Always degree at most *d* temporal graphs: *d*-approx. algorithm

Algorithm d-approximation of SW-TVC on always degree at most d temporal graphs

Input: An always degree at most d temporal graph (G, λ) of lifetime T, and $\Delta \leq T$. **Output:** A sliding Δ -window temporal vertex cover S of (G, λ) .

- 1: for every edge $uv \in E(G)$ do
- 2: Compute an optimal solution S_{uv} of the problem for $(G[\{u, v\}], \lambda)]$
- 3: $S \leftarrow S \cup S_{uv}$

return ${\cal S}$

Lemma

The above algorithm is a O(mT)-time *d*-approximation algorithm for SW-TVC on always degree at most *d* temporal graphs.

Always degree at most *d* temporal graphs: *d*-approx. algorithm

Algorithm d-approximation of SW-TVC on always degree at most d temporal graphs

Input: An always degree at most d temporal graph (G, λ) of lifetime T, and $\Delta \leq T$. **Output:** A sliding Δ -window temporal vertex cover S of (G, λ) .

- 1: for every edge $uv \in E(G)$ do
- 2: Compute an optimal solution S_{uv} of the problem for $(G[\{u, v\}], \lambda)]$
- 3: $S \leftarrow S \cup S_{uv}$

return ${\cal S}$

Lemma

The above algorithm is a O(mT)-time *d*-approximation algorithm for SW-TVC on always degree at most *d* temporal graphs.

Corollary

SW-TVC can be optimally solved in O(mT) time on the class of always degree at most 1 (matching) temporal graphs.

George B. Mertzios

- Basic definitions
- Alternative models
- Temporal vertex cover
- Temporal vertex cover with a sliding time window
- Open problems

Determine the complexity status of Δ -TVC on degree at most 2 temporal graphs.

① Δ -TVC on always degree at most 1 can be solved in linear time.

Determine the complexity status of Δ -TVC on degree at most 2 temporal graphs.

Δ-TVC on always degree at most 1 can be solved in linear time.
 Δ-TVC on always degree at most 3: no PTAS

Determine the complexity status of Δ -TVC on degree at most 2 temporal graphs.

- Δ -TVC on always degree at most 1 can be solved in linear time.
- **2** Δ -TVC on always degree at most 3: no PTAS, even when:
 - the underlying graph has degree at most 3; and
 - O connected components of snapshots have at most 7 vertices.

Determine the complexity status of Δ -TVC on degree at most 2 temporal graphs.

- **2** Δ -TVC on always degree at most 3: no PTAS, even when:
 - the underlying graph has degree at most 3; and
 - O connected components of snapshots have at most 7 vertices.

Problem 2

Can Δ -TVC on general graphs be approximated within a factor better than 2Δ ?

Determine the complexity status of Δ -TVC on degree at most 2 temporal graphs.

- **2** Δ -TVC on always degree at most 3: no PTAS, even when:
 - the underlying graph has degree at most 3; and
 - O connected components of snapshots have at most 7 vertices.

Problem 2

Can Δ -TVC on general graphs be approximated within a factor better than 2Δ ?

Problem 3

Can Δ -TVC on always degree at most d temporal graphs be approximated within a factor better than d?

George B. Mertzios

Thank you!