Geotechnical Data for Transportation Infrastructure

Tim Spink, Mott MacDonald
The transportation geotechnical asset

- Foundations
- Tunnels
- Road & track bed
- Earthworks
- Also supports:
 - communication lines
 - noise barriers
 - landscaping
Earthworks

- ~1/3rd cutting
- ~1/3rd embankment
- ~1/3rd total asset value
- Aging asset
Rock falls
Soil slips
Geotechnical asset deterioration

Network Development
Initial Deterioration
Deterioration / Maintenance Cycles

Fixed Asset Value

Time

Maximum Serviceability State
Minimum Serviceability State

If failure

Time of optimal maintenance action
Reactive >> proactive maintenance

• Benefits
 – Improved safety
 – Reduced disruption
 – 80% less maintenance cost

• Requirements
 – Improved asset knowledge
 – Systematic surveys
 – Standardised procedures
 – GIS/database asset management systems
 – Standard data formats
CIRIA geotechnical data formats review

Project Stages

Conceptual/feasibility studies

Investigations

Design

Construction

Maintenance Management

Decommissioning

Strategic: (Preventative/ improvement) or Tactical: (Remediation)
CIRIA geotechnical data formats review

Project Stages
- Conceptual/feasibility studies
- Investigations
- Design
- Construction
- Maintenance Management
- Decommissioning

Data types
- Preliminary sources study data
- Aerial photographs
- Topographic surveys
- Digital terrain models/LIDAR etc
- Intrusive geotechnical
- Geophysical
- Geochemical
- Monitoring etc
- Ground models
- Design parameters
- Design details based on the above

Strategic: (Preventative/ improvement) or **Tactical:** (Remediation)

- Main works contractor: Compliance testing data
 - Construction record/drawings
 - Feedback reports
- Specialist sub-contractor: Tunnelling, piling, dewatering, strengthening, ground improvement records etc
- Managing Agents & specialist survey contractors
 - Geotechnical asset condition/inventory data
 - Related assets: drainage, structure, pavement etc
CIRIA geotechnical data formats review

Data types

- Preliminary sources study data
 - Aerial photographs
 - Topographic surveys
 - Digital terrain models/LIDAR etc
- Intrusive geotechnical
 - Geophysical
 - Geochemical
 - Monitoring etc
- Ground models
 - Design parameters
 - Design details based on the above

Available Data Transfer Formats

- Documents: Word, PDF etc
- Proprietary images formats
- Drawings: DWG, DGN, DXF etc
- Proprietary DTM formats: LAS, MX etc
- AGS data
- Various geophysical transfer formats: LAS, SEG-Y etc
- Geochemical transfer formats: EQUIS etc
- Drawings: DWG, DGN, DXF etc
- Spreadsheets: Excel etc
- Documents: Word, PDF etc
- Drawings: DWG, DGN, DXF etc
- Spreadsheets: Excel etc
- Documents: Word, PDF etc
- Drawings: DWG, DGN, DXF etc
- Spreadsheets: Excel etc
- Documents: Word, PDF etc
- Databases: MDB, DBF etc

Main works contractor:
- Compliance testing data
- Construction record/drawings
- Feedback reports

Specialist sub-contractor:
- Tunnelling, piling, dewatering, strengthening, ground improvement records etc

Managing Agents & specialist survey contractors
- Geotechnical asset condition/inventory data
- Related assets: drainage, structure, pavement etc
Supported data formats

- 1600 geotechnical / geological etc software programs
- 120 data formats

[Bar chart showing the count of data formats supported for different categories such as Petroleum Geoscience, Mapping and GIS, Images, Geotechnical, Geophysics, Geological, Geoenvironmental, Documents, Database and Spreadsheet, and Asset.]
Most popular supported formats

- DXF
- Excel
- Windows bitmap
- Windows metafile
- Access
- Word
- JPEG
- MIF / MID
- Tagged Image File
- AGS
- ZSoft Paint
- Comma Separated Values
- dBase
- HPGL
- Graphics Interchange Format
- LAS
- DEM
- Rich Text Format
- Paradox
- LIS/LIS-79

Count
Geotechnical / geological / geophysical formats

Scope

- Ground investigation
- Monitoring
- Design
- Construction
- Asset management
- Hazard

Count
Geotechnical data transfer needs

• Lack of standard approach for transfer of:-
 – Documents, mapping/GIS, drawings

• Lack of standard specialist formats for:-
 – Transfer of conceptual/feasibility/desk study info
 – Transfer of interpretative data
 • interpretative ground models
 • design/analysis models
 • design data
 – Transfer of construction information
 • as built records
 • piling
 • feedback information
 – Transfer of geotechnical asset data
Example geotechnical asset data format

• UK Highways Agency
 – 9400km of motorway & trunk roads
 – 6000km of earthworks
 – Valued at £20 billion
 – Maintained by contractors

• Standard procedures
 – HD41 2003 standard
 – 5 year inspection cycle
 – Risk based assessment

• Standard tools
 – Internet GIS asset management system (HAGDMS)
 – Handheld field data capture device (PocketGAD)

• GADML data format
Earthworks and observations
GADML for Geotechnical Asset Data

• GML compatible XML format

• Inspections
 – Who
 – When
 – Where
 – Survey equipment & accuracy

• Earthworks
 – Type (embankment, cutting, bund, at-grade)
 – Earthwork extents
 – Geology
 – Attached sketches or photographs

• Observations
 – Start and end of observation
 – Geometry (height & angle)
 – Defects, vegetation, water, drainage, reinforcement
 – Attached sketches or photographs
Field surveys

- Data round-trips
 - Server
 - GADML
 - Field survey
 - GADML
 - Server
- Inventory & condition
- Maps, aerial photos & forms
- GPS
- Photos & sketches
- Data validation
DIGGS

DIGGS International Governing Body

DIGGS Technical Steering Committee
 (formed out of existing Data Coalition)
 - Ground investigation (current WP)
 - Foundations (current WP)
 - 2D & 3D (offshoot from current WP)
 - Geophysics (offshoot from current WP)
 - Geo-environmental
 - Geotechnical Asset Data (including GADML)

Technical Special Interest Groups

Country Special Interest Groups
 - North America (current GMS)
 - UK (AGS)
 - Hong Kong (HK AGS)
 - Netherlands
 - Sweden
 - Denmark
 - Japan
 - Australia
 - etc