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Abstract. Evolutionary dynamics have been traditionally studied in
the context of homogeneous populations, mainly described by the Moran
process [15]. Recently, this approach has been generalized in [13] by
arranging individuals on the nodes of a network (in general, directed).
In this setting, the existence of directed arcs enables the simulation
of extreme phenomena, where the fixation probability of a randomly
placed mutant (i.e. the probability that the offsprings of the mutant
eventually spread over the whole population) is arbitrarily small or
large. On the other hand, undirected networks (i.e. undirected graphs)
seem to have a smoother behavior, and thus it is more challenging to find
suppressors/amplifiers of selection, that is, graphs with smaller/greater
fixation probability than the complete graph (i.e. the homogeneous
population). In this paper we focus on undirected graphs. We present
the first class of undirected graphs which act as suppressors of selection,
by achieving a fixation probability that is at most one half of that of
the complete graph, as the number of vertices increases. Moreover,
we provide some generic upper and lower bounds for the fixation
probability of general undirected graphs. As our main contribution,
we introduce the natural alternative of the model proposed in [13].
In our new evolutionary model, all individuals interact simultaneously
and the result is a compromise between aggressive and non-aggressive
individuals. That is, the behavior of the individuals in our new model
and in the model of [13] can be interpreted as an “aggregation” vs. an
“all-or-nothing” strategy, respectively. We prove that our new model
of mutual influences admits a potential function, which guarantees the
convergence of the system for any graph topology and any initial fitness
vector of the individuals. Furthermore, we prove fast convergence to the
stable state for the case of the complete graph, as well as we provide
almost tight bounds on the limit fitness of the individuals. Apart from
being important on its own, this new evolutionary model appears to
be useful also in the abstract modeling of control mechanisms over
invading populations in networks. We demonstrate this by introducing
and analyzing two alternative control approaches, for which we bound
the time needed to stabilize to the “healthy” state of the system.
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1 Introduction

Evolutionary dynamics have been well studied (see [1,6,7,19,21,22]), mainly in
the context of homogeneous populations, described by the Moran process [15,17].
In addition, population dynamics have been extensively studied also from the
perspective of the strategic interaction in evolutionary game theory, cf. for in-
stance [8,9,10,11,20]. One of the main targets of evolutionary game theory is
evolutionary dynamics (see [9,23]). Such dynamics usually examine the propa-
gation of intruders with a given fitness to a population, whose initial members
(resident individuals) have a different fitness. In fact, “evolutionary stability”
is the case where no dissident behaviour can invade and dominate the popula-
tion. The evolutionary models and the dynamics we consider here belong to this
framework. In addition, however, we consider structured populations (i.e. in the
form of an undirected graph) and we study how the underlying graph structure
affects the evolutionary dynamics. We study in this paper two kinds of evolu-
tionary dynamics. Namely, the “all or nothing” case (where either the intruder
overtakes the whole graph or die out) and the “aggregation” case (more simi-
lar in spirit to classical evolutionary game theory, where the intruder’s fitness
aggregates with the population fitness and generates eventually a homogeneous
crowd with a new fitness).

In a recent article, Lieberman, Hauert, and Nowak proposed a generaliza-
tion of the Moran process by arranging individuals on a connected network
(i.e. graph) [13] (see also [18]). In this model, vertices correspond to individuals of
the population and weighted edges represent the reproductive rates between the
adjacent vertices. That is, the population structure is translated into a network
(i.e. graph) structure. Furthermore, individuals (i.e. vertices) are partitioned into
two types: aggressive and non-aggressive. The degree of (relative) aggressiveness
of an individual is measured by its relative fitness ; in particular, non-aggressive
and aggressive individuals are assumed to have relative fitness 1 and r ≥ 1,
respectively. This modeling approach initiates an ambitious direction of inter-
disciplinary research, which combines classical aspects of computer science (such
as combinatorial structures and complex network topologies), probabilistic cal-
culus (discrete Markov chains), and fundamental aspects of evolutionary game
theory (such as evolutionary dynamics).

In the model of [13], one mutant (or invader) with relative fitness r ≥ 1 is
introduced into a given population of resident individuals, each of whom hav-
ing relative fitness 1. For simplicity, a vertex of the graph that is occupied by
a mutant will be referred to as black, while the rest of the vertices will be re-
ferred to as white. At each time step, an individual is chosen for reproduction
with a probability proportional to its fitness, while its offspring replaces a ran-
domly chosen neighboring individual in the population. Once u has been se-
lected for reproduction, the probability that vertex u places its offspring into
position v is given by the weight wuv of the directed arc 〈uv〉. This process stops
when either all vertices of the graph become black (resulting to a fixation of the
graph) or they all become white (resulting to extinction of the mutants). Several
similar models have been previously studied, describing for instance influence
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propagation in social networks (such as the decreasing cascade model [12,16]),
dynamic monopolies [2], particle interactions (such as the voter model, the an-
tivoter model, and the exclusion process), etc. However, the dynamics emerging
from these models do not consider different fitnesses for the individuals.

The fixation probability fG of a graph G = (V, E) is the probability that even-
tually fixation occurs, i.e. the probability that an initially introduced mutant,
placed uniformly at random on a vertex of G, eventually spreads over the whole
population V , replacing all resident individuals. One of the main characteristics
in this model is that at every iteration of the process, a “battle” takes place
between aggressive and non-aggressive individuals, while the process stabilizes
only when one of the two teams takes over the whole population. This kind of
behavior of the individuals can be interpreted as an all-or-nothing strategy.

Lieberman et al. [13] proved that the fixation probability for every symmetric
directed graph (i.e. when wuv = wvu for every u, v) is equal to that of the com-
plete graph (i.e. the homogeneous population of the Moran process), which tends
to 1− 1

r as the size n of the population grows. Moreover, exploiting vertices with
zero in-degree or zero out-degree (“upstream” and “downstream” populations,
respectively), they provided several examples of directed graphs with arbitrarily
small and arbitrarily large fixation probability [13]. Furthermore, the existence
of directions on the arcs leads to examples where neither fixation nor extinction
is possible (e.g. a graph with two sources).

In contrast, general undirected graphs (i.e. when 〈uv〉 ∈ E if and only if
〈vu〉 ∈ E for every u, v) appear to have a smoother behavior, as the above process
eventually reaches fixation or extinction with probability 1. Furthermore, the
coexistence of both directions at every edge in an undirected graph seems to make
it more difficult to find suppressors or amplifiers of selection (i.e. graphs with
smaller or greater fixation probability than the complete graph, respectively),
or even to derive non-trivial upper and lower bound for the fixation probability
on general undirected graphs. This is the main reason why only little progress
has been done so far in this direction and why most of the recent work focuses
mainly on the exact or numerical computation of the fixation probability for
very special cases of undirected graphs, e.g. the star and the path [3,4,5].

Our Contribution. In this paper we overcome this difficulty for undirected
graphs and we provide the first class of undirected graphs that act as suppres-
sors of selection in the model of [13], as the number of vertices increases. This is
a very simple class of graphs (called clique-wheels), where each member Gn has a
clique of size n ≥ 3 and an induced cycle of the same size n with a perfect matching
between them. We prove that, when the mutant is introduced to a clique vertex
of Gn, then the probability of fixation tends to zero as n grows. Furthermore, we
prove that, when the mutant is introduced to a cycle vertex of Gn, then the prob-
ability of fixation is at most 1 − 1

r as n grows (i.e. to the same value with the
homogeneous population of the Moran process). Therefore, since the clique and
the cycle have the same number n of vertices in Gn, the fixation probability fGn

of Gn is at most 1
2 (1 − 1

r ) as n increases, i.e. Gn is a suppressor of selection. Fur-
thermore, we provide for the model of [13] the first non-trivial upper and lower
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bounds for the fixation probability in general undirected graphs. In particular, we
first provide a generic upper bound depending on the degrees of some local neigh-
borhood. Second, we present another upper and lower bound, depending on the
ratio between the minimum and the maximum degree of the vertices.

As our main contribution, we introduce in this paper the natural alternative
of the all-or-nothing approach of [13], which can be interpreted as an aggrega-
tion strategy. In this aggregation model, all individuals interact simultaneously
and the result is a compromise between the aggressive and non-aggressive indi-
viduals. Both these two alternative models for evolutionary dynamics coexist in
several domains of interaction between individuals, e.g. in society (dictatorship
vs. democracy, war vs. negotiation) and biology (natural selection vs. mutation of
species). In particular, another motivation for our models comes from biological
networks, in which the interacting individuals (vertices) correspond to cells of an
organ and advantageous mutants correspond to viral cells or cancer. Regarding
the proposed model of mutual influences, we first prove that it admits a potential
function. This potential function guarantees that for any graph topology and any
initial fitness vector, the system converges to a stable state, where all individuals
have the same fitness. Furthermore, we analyze the telescopic behavior of this
model for the complete graph. In particular, we prove fast convergence to the
stable state, as well as we provide almost tight bounds on the limit fitness of the
individuals.

Apart from being important on its own, this new evolutionary model enables
also the abstract modeling of new control mechanisms over invading populations
in networks. We demonstrate this by introducing and analyzing the behavior
of two alternative control approaches. In both scenarios we periodically modify
the fitness of a small fraction of individuals in the current population, which is
arranged on a complete graph with n vertices. In the first scenario, we proceed
in phases. Namely, after each modification, we let the system stabilize before
we perform the next modification. In the second scenario, we modify the fitness
of a small fraction of individuals at each step. In both alternatives, we stop
performing these modifications of the population whenever the fitness of every
individual becomes sufficiently close to 1 (which is considered to be the “healthy”
state of the system). For the first scenario, we prove that the number of phases
needed for the system to stabilize in the healthy state is logarithmic in r − 1
and independent of n. For the second scenario, we prove that the number of
iterations needed for the system to stabilize in the healthy state is linear in n
and proportional to r ln(r − 1). Due to space limitations we omit the proofs of
the results, which can be found in [14].

Notation. In an undirected graph G = (V, E), the edge between vertices u ∈ V
and v ∈ V is denoted by uv ∈ E, and in this case u and v are said to be
adjacent in G. If the graph G is directed, we denote by 〈uv〉 the arc from u to
v. For every vertex u ∈ V in an undirected graph G = (V, E), we denote by
N(u) = {v ∈ V | uv ∈ E} the set of neighbors of u in G and by deg(u) = |N(u)|.
Furthermore, for any k ≥ 1, we denote for simplicity [k] = {1, 2, . . . , k}.
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2 All-or-Nothing vs. Aggregation

In this section we formally define the model of [13] for undirected graphs and we
introduce our new model of mutual influences. Similarly to [13], we assume for
every edge uv of an undirected graph that wuv = 1

deg u and wvu = 1
deg v , i.e. once

a vertex u has been chosen for reproduction, it chooses one of its neighbors
uniformly at random.

2.1 The Model of Lieberman, Hauert, and Nowak (An
All-or-Nothing Approach)

Let G = (V, E) be a connected undirected graph with n vertices. Then, the
stochastic process defined in [13] can be described by a Markov chain with state
space S = 2V (i.e. the set of all subsets of V ) and transition probability matrix
P , where for any two states S1, S2 ⊆ V ,

PS1,S2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
|S1|r+n−|S1| ·

∑
u∈N(v)∩S1

r
deg(u) , if S2 = S1 ∪ {v} and v /∈ S1

1
|S1|r+n−|S1| ·

∑
u∈N(v)\S2

1
deg(u) , if S1 = S2 ∪ {v} and v /∈ S2

1
|S1|r+n−|S1|

( ∑
u∈S1

r·|N(u)∩S1|
deg(u) +

∑
u∈V \S1

|N(u)∩(V \S1)|
deg(u)

)
, if S2 = S1

0, otherwise

(1)

Notice that in the above Markov chain there are two absorbing states, namely
∅ and V , which describe the cases where the vertices of G are all white or all
black, respectively. Since G is connected, the above Markov chain will eventually
reach one of these two absorbing states with probability 1. If we denote by hv

the probability of absorption at state V , given that we start with a single mutant
placed on vertex v, then by definition fG =

∑
v hv

n . Generalizing this notation,
let hS be the probability of absorption at V given that we start at state S ⊆ V ,
and let h = [hS ]S⊆V . Then, it follows that vector h is the unique solution of the
linear system h = P · h with boundary conditions h∅ = 0 and hV = 1.

However, observe that the state space S = 2V of this Markov chain has size 2n,
i.e. the matrix P = [PS1,S2 ] in (1) has dimension 2n×2n. This indicates that the
problem of computing the fixation probability fG of a given graph G is hard, as
also mentioned in [13]. This is the main reason why, to the best of our knowledge,
all known results so far regarding the computation of the fixation probability of
undirected graphs are restricted to regular graphs, stars, and paths [3,4,5,13,18].
In particular, for the case of regular graphs, the above Markov chain is equivalent
to a birth-death process with n − 1 transient (non-absorbing) states, where the
forward bias at every state (i.e. the ratio of the forward probability over the
backward probability) is equal to r. In this case, the fixation probability is equal
to ρ = 1

1+
∑n−1

i=1
1
ri

= 1− 1
r

1− 1
rn

. cf. [18], chapter 8. It is worth mentioning that, even

for the case of paths, there is no known exact or approximate formula for the
fixation probability [5].
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2.2 An Evolutionary Model of Mutual Influences (An Aggregation
Approach)

The evolutionary model of [13] constitutes a sequential process, in every step
of which only two individuals interact and the process eventually reaches one
of two extreme states. However, in many evolutionary processes, all individu-
als may interact simultaneously at each time step, while some individuals have
greater influence to the rest of the population than others. This observation leads
naturally to the following model for evolution on graphs, which can be thought
as a smooth version of the model presented in [13].

Consider a population of size n and a portion α ∈ [0, 1] of newly introduced
mutants with relative fitness r. The topology of the population is given in general
by a directed graph G = (V, E) with |V | = n vertices, where the directed arcs
of E describe the allowed interactions between the individuals. At each time step,
every individual u ∈ V of the population influences every individual v ∈ V , for
which 〈uv〉 ∈ E, while the degree of this influence is proportional to the fitness
of u and to the weight wuv of the arc 〈uv〉. Note that we can assume without loss
of generality that the weights wuv on the arcs are normalized, i.e. for every fixed
vertex u ∈ V it holds

∑
〈uv〉∈E wuv = 1 . Although this model can be defined in

general for directed graphs with arbitrary arc weights wuv, we will focus in the
following to the case where G is an undirected graph (i.e. 〈uiuj〉 ∈ E if and only
if 〈ujui〉 ∈ E, for every i, j) and wuv = 1

deg(u) for all edges uv ∈ E.
Formally, let V = {u1, u2, . . . , un} be the set of vertices and rui(k) be the

fitness of the vertex ui ∈ V at iteration k ≥ 0. Let Σ(k) denote the sum
of the fitnesses of all vertices at iteration k, i.e. Σ(k) =

∑n
i=1 rui(k). Then

the vector r(k + 1) with the fitnesses rui (k + 1) of the vertices ui ∈ V at
the next iteration k + 1 is given by [ru1(k + 1), ru2(k + 1), . . . , run(k + 1)]T =
P · [ru1(k), ru2 (k), . . . , run(k)]T , i.e.

r(k + 1) = P · r(k) (2)

In the latter equation, the elements of the square matrix P = [Pij ]ni,j=1 depend
on the iteration k and they are given as follows:

Pij =

⎧⎪⎪⎨
⎪⎪⎩

ruj
(k)

deg(uj)Σ(k) , if i 	= j and uiuj ∈ E

0, if i 	= j and uiuj /∈ E

1 −∑j 	=i Pij , if i = j

(3)

Note by (2) and (3) that after the first iteration, the fitness of every individual
in our new evolutionary model of mutual influences equals the expected fitness
of this individual in the model of [13] (cf. Section 2.1). However, this correlation
of the two models is not maintained in the next iterations and the two models
behave differently as the processes evolve.

In particular, in the case where G is the complete graph, i.e. deg(ui) = n− 1
for every vertex ui, the matrix P becomes
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P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 − ru2(k)+...+run (k)

(n−1)Σ(k) · · · run (k)
(n−1)Σ(k)

ru1 (k)

(n−1)Σ(k) · · · run (k)
(n−1)Σ(k)

· · · · · · · · ·
ru1 (k)

(n−1)Σ(k) · · · 1 − ru1(k)+...+run−1(k)

(n−1)Σ(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

The system given by (2) and (3) can be defined for every initial fitness vec-
tor r(0). However, in the case where there is initially a portion α ∈ [0, 1] of
newly introduced mutants with relative fitness r, the initial condition r(0) of the
system in (2) is a vector with αn entries equal to r and with (1 − α)n entries
equal to 1. Note that the recursive equation (2) is a non-linear equation on the
fitness values ruj (k) of the vertices at iteration k.

Since by (3) the sum of every row of the matrix P equals to one, the fitness
rui(k) of vertex ui after the (k + 1)-th iteration of the process is a convex combi-
nation of the fitnesses of the neighbors of ui after the k-th iteration. Therefore, in
particular, the fitness of every vertex ui at every iteration k ≥ 0 lies between the
smallest and the greatest initial fitness of the vertices. That is, if rmin and rmax

denote the smallest and the greatest initial fitness in r(0), respectively, then
rmin ≤ rui(k) ≤ rmax for every ui ∈ V and every k ≥ 0.

Degree of influence. Suppose that initially αn mutants (for some α ∈ [0, 1])
with relative fitness r ≥ 1 are introduced in graph G on a subset S ⊆ V of its
vertices. Then, as we prove in Theorem 4, after a certain number of iterations
the fitness vector r(k) converges to a vector [rS

0 , rS
0 , . . . , rS

0 ]T , for some value rS
0 .

This limit fitness rS
0 depends in general on the initial relative fitness r of the

mutants, on their initial number αn, as well as on their initial position on the
vertices of S ⊆ V . The relative fitness r of the initially introduced mutants can
be thought as having the “black” color, while the initial fitness of all the other
vertices can be thought as having the “white” color. Then, the limit fitness
rS
0 can be thought as the “degree of gray color” that all the vertices obtain

after sufficiently many iterations, given that the mutants are initially placed at
the vertices of S. In the case where the αn mutants are initially placed with
uniform probability to the vertices of G, we can define the limit fitness r0 of G
as r0 = 1

( n
αn)

·∑S⊆V, |S|=αn rS
0 . For a given initial value of r, the bigger is r0 the

stronger is the effect of natural selection in G.
Since rS

0 is a convex combination of r and 1, there exists a value fG,S(r) ∈
[0, 1], such that rS

0 = fG,S(r) · r + (1 − fG,S(r)) · 1. Then, the value fG,S(r) is the
degree of influence of the graph G, given that the mutants are initially placed at
the vertices of S. In the case where the mutants are initially placed with uniform
probability at the vertices of G, we can define the degree of influence of G as
fG(r) = 1

( n
αn)
∑

S⊆V, |S|=αn fG,S(r).

Number of iterations to stability. For some graphs G, the fitness vector r(k)
reaches exactly the limit fitness vector [r0, r0, . . . , r0]T (for instance, the complete
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graph with two vertices and one mutant not only reaches this limit in exactly one
iteration, but also the degree of influence is exactly the fixation probability of
this simple graph). However, for other graphs G the fitness vector r(k) converges
to [r0, r0, . . . , r0]T (cf. Theorem 4 below), but it never becomes equal to it. In the
first case, one can compute (exactly or approximately) the number of iterations
needed to reach the limit fitness vector. In the second case, given an arbitrary
ε > 0, one can compute the number of iterations needed to come ε-close to the
limit fitness vector.

3 Analysis of the All-or-Nothing Model

In this section we present analytic results on the evolutionary model of [13],
which is based on the sequential interaction among the individuals. In particular,
we first present non-trivial upper and lower bounds for the fixation probability,
depending on the degrees of vertices. Then we present the first class of undirected
graphs that act as suppressors of selection in the model of [13], as the number
of vertices increases.

Recall by the preamble of Section 2.2 that, similarly to [13], we assumed
that wuv = 1

deg u and wvu = 1
deg v for every edge uv of an undirected graph

G = (V, E). It is easy to see that this formulation is equivalent to assigning to
every edge e = uv ∈ E the weight we = wuv = wvu = 1, since also in this case,
once a vertex u has been chosen for reproduction, it chooses one of its neighbors
uniformly at random. A natural generalization of this weight assignment is to
consider G as a complete graph, where every edge e in the clique is assigned
a non-negative weight we ≥ 0, and we is not necessarily an integer. Note that,
whenever we = 0, it is as if the edge e is not present in G. Then, once a vertex u
has been chosen for reproduction, u chooses any other vertex v with probability

wuv∑
x �=u wux

.
Note that, if we do not impose any additional constraint on the weights, we

can simulate multigraphs by just setting the weight of an edge to be equal to the
multiplicity of this edge. Furthermore, we can construct graphs with arbitrary
small fixation probability. For instance, consider an undirected star with n leaves,
where one of the edges has weight an arbitrary small ε > 0 and all the other
edges have weight 1. Then, the leaf that is incident to the edge with weight ε
acts as a source in the graph as ε → 0. Thus, the only chance to reach fixation
is when we initially place the mutant at the source, i.e. the fixation probability
of this graph tends to 1

n+1 as ε → 0. Therefore, it seems that the difficulty to
construct strong suppressors lies in the fact that unweighted undirected graphs
can not simulate sources. For this reason, we consider in the remainder of this
paper only unweighted undirected graphs.

3.1 A Generic Upper Bound Approach

In the next theorem we provide a generic upper bound of the fixation probability
of undirected graphs, depending on the degrees of the vertices in some local
neighborhood.
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Theorem 1. Let G = (V, E) be an undirected graph. For any uv ∈ E, let
Qu =

∑
x∈N(u)

1
deg x and Quv =

∑
x∈N(u)\{v}

1
deg x +

∑
x∈N(v)\{u}

1
deg x . Then

fG ≤ maxuv∈E

{
r2

r2+rQu+QuQuv

}
.

3.2 Upper and Lower Bounds Depending on Degrees

In the following theorem we provide upper and lower bounds of the fixation
probability of undirected graphs, depending on the minimum and the maximum
degree of the vertices.

Theorem 2. Let G = (V, E) be an undirected graph, where δ ≤ deg(u) ≤ Δ
for every u ∈ V . Then, the fixation probability fG of G, when the fitness of
the mutant is r, is upper (resp. lower) bounded by the fixation probability of the
clique for mutant fitness ru = rΔ

δ (resp. for mutant fitness rl = rδ
Δ ).

3.3 The Undirected Suppressor

In this section we provide the first class of undirected graphs (which we call
clique-wheels) that act as suppressors of selection as the number of vertices
increases. In particular, we prove that the fixation probability of the members
of this class is at most 1

2 (1 − 1
r ), i.e. the half of the fixation probability of the

complete graph, as n → ∞. The clique-wheel graph Gn consists of a clique of
size n ≥ 3 and an induced cycle of the same size n with a perfect matching
between them. We refer to the vertices of the inner clique as clique vertices and
to the vertices of the outer cycle as ring vertices. The proof of the main results
of this section (cf. Lemma 1 and Theorem 3) is technically involved. However,
due to space limitations, we omit here the proofs; for a full version see [14].

Denote by hclique (resp. hring) the probability that all the vertices of Gn

become black, given that we start with one black clique vertex (resp. with one
black ring vertex). We first provide in the next lemma an upper bound on hclique.

Lemma 1. For any r ∈ (1, 4
3

)
, hclique ≤ 7

6n( 4
3r −1) + o

(
1
n

)
.

In the next theorem we provide also an upper bound on hring, thus bounding
the fixation probability fGn of Gn (cf. Theorem 3).

Theorem 3. For any r ∈ (1, 4
3

)
, hring ≤ (1 + o(1))

(
1 − 1

r

)
. Therefore, by

Lemma 1, the fixation probability of the clique-wheel graph Gn is fGn ≤
1
2

(
1 − 1

r

)
+ o(1) as n → ∞.

4 Analysis of the Aggregation Model

In this section, we provide analytic results on the new evolutionary model of
mutual influences. More specifically, in Section 4.1 we prove that this model
admits a potential function for arbitrary undirected graphs and arbitrary initial
fitness vector, which implies that the corresponding dynamic system converges
to a stable state. Furthermore, in Section 4.2 we prove fast convergence of the
dynamic system for the case of a complete graph, as well as we provide almost
tight upper and lower bounds on the limit fitness, to which the system converges.
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4.1 Potential and Convergence in General Undirected Graphs

In the following theorem we prove convergence of the new model of mutual
influences using a potential function.

Theorem 4. Let G = (V, E) be a connected undirected graph. Let r(0) be an
initial fitness vector of G, and let rmin and rmax be the smallest and the greatest
initial fitness in r(0), respectively. Then, in the model of mutual influences, the
fitness vector r(k) converges to a vector [r0, r0, . . . , r0]T as k → ∞, for some
value r0 ∈ [rmin, rmax].

4.2 Analysis of the Complete Graph

The next theorem provides an almost tight analysis for the limit fitness value r0

and the convergence time to this value, in the case of a complete graph (i.e. a
homogeneous population).

Theorem 5. Let G = (V, E) be the complete graph with n vertices and ε > 0.
Let α ∈ [0, 1] be the portion of initially introduced mutants with relative fitness
r ≥ 1 in G, and let r0 be the limit fitness of G. Then |ru(k) − rv(k)| < ε for
every u, v ∈ V , when k ≥ (n− 2) · ln( r−1

ε ). Furthermore, for the limit fitness r0,

1 + α(r − 1) ≤ r0 ≤ 1 + α(r − 1) +
α(1 − α)

1 + α(r − 1)
· (r − 1)2

2
(5)

Corollary 1. Let G = (V, E) be the complete graph with n vertices. Suppose
that initially exactly one mutant with relative fitness r ≥ 1 is placed in G and
let r0 be the limit fitness of G. Then 1 + r−1

n ≤ r0 ≤ 1 + r2−1
2n .

5 Invasion Control Mechanisms

As stated in the introduction of this paper, our new evolutionary model of mutual
influences can be used to model control mechanisms over invading populations
in networks. We demonstrate this by presenting two alternative scenarios in Sec-
tions 5.1 and 5.2. In both considered scenarios, we assume that αn individuals of
relative fitness r (the rest being of fitness 1) are introduced in the complete graph
with n vertices. Then, as the process evolves, we periodically choose (arbitrarily)
a small fraction β ∈ [0, 1] of individuals in the current population and we reduce
their current fitnesses to a value that is considered to correspond to the healthy
state of the system (without loss of generality, this value in our setting is 1). In
the remainder of this section, we call these modified individuals as “stabilizers”,
as they help the population resist to the invasion of the mutants.



300 G.B. Mertzios et al.

5.1 Control of Invasion in Phases

In the first scenario of controlling the invasion of advantageous mutants in net-
works, we insert stabilizers to the population in phases, as follows. In each phase
k ≥ 1, we let the process evolve until all fitnesses {rv | v ∈ V } become ε-
relatively-close to their fixed point r

(k)
0 (i.e. until they ε-approximate r

(k)
0 ). That

is, until |rv−r
(k)
0 |

r
(k)
0

< ε for every v ∈ V . Note by Theorem 4 that, at every phase,

the fitness values always ε-approximate such a limit fitness r
(k)
0 . After the end of

each phase, we introduce βn stabilizers, where β ∈ [0, 1]. That is, we replace βn
vertices (arbitrarily chosen) by individuals of fitness 1, i.e. by resident individ-
uals. Clearly, the more the number of phases, the closer the fixed point at the
end of each phase will be to 1. In the following theorem we bound the number
of phases needed until the system stabilizes, i.e. until the fitness of every vertex
becomes sufficiently close to 1.

Theorem 6. Let G = (V, E) be the complete graph with n vertices. Let α ∈ [0, 1]
be the portion of initially introduced mutants with relative fitness r ≥ 1 in G
and let β ∈ [0, 1] be the portion of the stabilizers introduced at every phase.
Let r

(k)
0 be the limit fitness after phase k and let ε, δ > 0, be such that β

2 >
√

ε
and δ > 4

3

√
ε. Finally, let each phase k run until the fitnesses ε-approximate

their fixed point r
(k)
0 . Then, after k ≥ 1 + ln ( ε+(1+ε) 1+α

2 (r−1)

δ− 4
3
√

ε
) / ln( 1

(1+ε)(1− β
2 )

)
phases, the relative fitness of every vertex u ∈ V is at most 1 + δ.

5.2 Continuous Control of Invasion

In this section we present another variation of controlling the invasion of ad-
vantageous mutants, using our new evolutionary model. In this variation, we do
not proceed in phases; we rather introduce at every single iteration of the pro-
cess βn stabilizers, where β ∈ [0, 1] is a small portion of the individuals of the
population. For simplicity of the presentation, we assume that at every iteration
the βn stabilizers with relative fitness 1 are the same.

Theorem 7. Let G = (V, E) be the complete graph with n vertices. Let α ∈ [0, 1]
be the portion of initially introduced mutants with relative fitness r ≥ 1 in G and
let β ∈ [0, 1] be the portion of the stabilizers introduced at every iteration. Then,
for every δ > 0, after k ≥ r

β (n − 1) · ln( r−1
δ ) iterations, the relative fitness of

every vertex u ∈ V is at most 1 + δ.

Observation 1. The bound in Theorem 7 of the number of iterations needed
to achieve everywhere a sufficiently small relative fitness is independent of the
portion α ∈ [0, 1] of initially placed mutants in the graph. Instead, it depends
only on the initial relative fitness r of the mutants and on the portion β ∈ [0, 1]
of the vertices, to which we introduce the stabilizers.
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