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Abstract We study the preemptive scheduling problem of a set of n jobs with release times and equal processing
times on a single machine. The objective is to minimize the sum of the weighted completion times

∑n
i=1 wi Ci of

the jobs. We propose for this problem the first parameterized algorithm on the number k of different weights. The

runtime of the proposed algorithm is O
(( n

k + 1
)k

n8
)

and hence, the problem is polynomially solvable for any

fixed number k of different weights.

Keywords Machine scheduling · Preemptive scheduling · Equal-length jobs · Parameterized algorithm ·
Polynomial algorithm

Mathematics Subject Classification (2000) Primary 68M20; Secondary 90B35

1 Introduction

In this paper we consider the preemptive scheduling of n jobs J1, J2, . . . , Jn with equal processing time p on a single
machine. Here, preemption means job splitting, i.e. the execution of a job Ji may be interrupted for the execution of
another job J j , while the execution of Ji will be resumed later on. Every job Ji has a release time ri , after which Ji

is available, and a positive weight wi ∈ {α j }kj=1. A schedule of these jobs is called feasible, if every job Ji starts not
earlier than its release time ri . The objective is to find a feasible schedule of these jobs that minimizes the weighted
sum

∑n
i=1 wi Ci , where Ci is the completion time of job Ji .

The preemptive scheduling has attracted many research efforts. Several problems, which are NP-hard in the
general case, admit polynomial algorithms under the assumption of equal-length jobs. In particular, the problem of
minimizing the sum of completion times on identical parallel machines is polynomially solvable for equal-length
jobs [1,2], while it is unary NP-hard for arbitrary processing times [2]. The problem of maximizing the weighted
throughput, or equivalently of minimizing the weighted number of late jobs on a single machine, is NP-hard [3] and
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pseudo-polynomially solvable [4] in the general case. On the contrary, its restriction to equal-length jobs is solvable
in polynomial time in the preemptive, as well as in the non-preemptive case [5,6]. For the problem of minimizing
the total tardiness there is also a polynomial algorithm for equal-length jobs [7]. Furthermore, minimizing the sum
of completion times [8] or the number of late jobs [4,9] on a single machine can be done in polynomial time also
for arbitrary processing times. More detailed complexity results on machine scheduling can be found in [10,11].

In the non-preemptive case, the problems of minimizing the number of late jobs on a single machine [12] and
minimizing the sum of the completion times on identical parallel machines [13] are polynomial for equal-length
jobs, while the corresponding problems in the general case are both NP-hard, also on a single machine [3,14].
Moreover, polynomial time algorithms are presented in [15] for the case of equal-length jobs on uniform parallel
machines.

The complexity status of the problem we focus on in this paper has been stated as an open question for equal-
length jobs and arbitrary weights on a single machine [2,11,16,17]. The non-preemptive version of this problem is
known to be polynomially solvable on a fixed number of identical parallel machines [16]. On the other hand, the
preemptive version of this problem is known to be NP-hard if the processing times are arbitrary on a single machine
[18], or even for equal processing times on identical parallel machines [19]. We propose the first polynomial algo-
rithm for arbitrary release times ri , which is parameterized on the number k of different weights wi . The runtime

of the proposed algorithm is O
(( n

k + 1
)k

n8
)

, while its space complexity is O
(( n

k + 1
)k

n6
)

.

Several real-time applications of this problem can be found. In the context of service management, vehicles may
arrive in predefined appointments for regular check. This process is preemptive, while the service time of each
vehicle is the same. In addition, special purpose vehicles, such as ambulances, have higher priority than others. In
the context of logistics, products that need special conditions, such as humidity and temperature, have to be stored
with higher priority than other products.

In Sect. 2 we provide some properties of an optimal schedule, in order to determine the possible start and com-
pletion times of the jobs. By using these results, we construct a polynomial dynamic programming algorithm in
Sect. 3. Finally, some conclusions and open questions are discussed in Sect. 4.

2 Properties of an Optimal Schedule

In this section we provide some properties of an optimal preemptive schedule S, in order to determine the set of
all possible start and completion times of the n jobs in S. For every job Ji let ri be its release time and Ci be
its completion time in S. As a first step, we prove the technical Lemma 2.1 that will be used several times in the
remaining part of the article.

Lemma 2.1 For every job Ji that is at least partially executed in an optimal schedule S in the time interval [rk, Ck),
it holds Ci < Ck.

Proof The proof will be done by contradiction. Suppose that job Ji is partially executed in at least one time interval
I ⊂ [rk, Ck) and that Ci > Ck , as it is illustrated in Fig. 1. Since Jk is completed at time Ck in S, there is a sufficient
small positive ε ≤ |I |, such that Jk is executed during the interval [Ck − ε, Ck). We can exchange now a part of
length ε of the interval I with the interval [Ck − ε, Ck). In this modified schedule S ′, the completion time of Jk

becomes at most Ck − ε, while the completion times of all other jobs remain the same. This is a contradiction to
the assumption that S is optimal. It follows that Ci < Ck . ��

The following Lemma 2.2 restricts the possible values of the makespan Cmax of any optimal schedule, i.e. the
completion time of the last completed job.

Lemma 2.2 The makespan Cmax in an optimal schedule S equals

Cmax = ri + �p (2.1)

for some i, � ∈ {1, 2, . . . , n}.
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Fig. 1 The impossible case Ci > Ck , where job Ji is partially executed in [rk , Ck)

Proof Let t be the end of the last idle period in S, i.e. the machine is working continuously between t and Cmax. Let
also that job Ji is executed directly after t , for some i ∈ {1, 2, . . . , n}. Then, t equals the release time ri of Ji , since
otherwise Ji could be scheduled to complete earlier, resulting thus to a better schedule, which is a contradiction.
Furthermore, every job Jk that is at least partially executed after t , has release time rk ≥ t , since otherwise Jk could
be scheduled to complete earlier, which is again a contradiction. Thus, since the machine is working continuously
between t and Cmax, it holds that Cmax = ri + �p, where 1 ≤ � ≤ n is the number of jobs executed in the interval
[t, Cmax). ��

Now, Lemma 2.3 determines the possible start and completion times of the jobs J1, J2, . . . , Jn in S.

Lemma 2.3 The start and completion times of the jobs in an optimal schedule S take values from the set

T := {ri + �p : 1 ≤ i ≤ n, 0 ≤ � ≤ n} (2.2)

Proof Consider an arbitrary job Jk and let J = {Ji : Ci ≤ Ck} be the set of all jobs that are completed not later
than Jk in S. Consider now a job Jm /∈ J . Then, Lemma 2.1 implies that no part of Jm is executed at all in any time
interval [ri , Ci ), where Ji ∈ J , since otherwise it would be Cm < Ci ≤ Ck , i.e. Jm ∈ J , which is a contradiction.
It follows that the completion time Ck of job Jk remains the same if we remove from schedule S all jobs Jm /∈ J .

Thus, it holds due to Lemma 2.2 that Ck = ri + �p, for some Ji ∈ J and � ∈ {1, 2, . . . , |J |}. Since |J | ≤ n,
it follows that for the completion time of an arbitrary job Jk it holds Ck ∈ T . Furthermore, due to the optimality
of S, an arbitrary job Ji starts either at its release time ri , or at the completion time Ck of another job Jk . Thus, all
start points of the jobs belong to T as well. ��

3 The Dynamic Programming Algorithm

3.1 Definitions and Boundary Conditions

In this section we propose a polynomial dynamic programming algorithm that computes the value of an optimal
preemptive schedule on a single machine, where the weights of the jobs take k possible values {αi : 1 ≤ i ≤ k},
with α1 > · · · > αk > 0. We partition the jobs into k sets J i = {J i

1, J i
2, . . . , J i

ni
}, i ∈ {1, . . . , k}, such that job J i

�

has weight αi for every � ∈ {1, . . . , ni }. Assume without loss of generality that for every i , the jobs J i
� are sorted

with respect to � in non-decreasing order according to their release times r i
�, i.e.

r i
1 ≤ r i

2 ≤ · · · ≤ r i
ni

(3.1)

Denote now by

t = (tk, tk−1, . . . , t1) (3.2)

a vector t ∈ N
k
0, where for its coordinates it holds 0 ≤ ti ≤ ni for every i ∈ {1, . . . , k}. Let P(t) = {i : ti > 0, 1 ≤

i ≤ k} be the set of indices that corresponds to strictly positive coordinates of t. For every vector t �= 0 = (0, . . . , 0)
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and every i ∈ P(t) define the vectors

t′i = (tk, . . . , ti+1, ti − 1, ti−1, . . . , t1) (3.3)

t′′i = (0, . . . , 0, ti , ti−1, . . . , t1) (3.4)

and let

tmax = max P(t) (3.5)

be the maximum index i , for which ti > 0. Furthermore, let R = {r i
� | 1 ≤ i ≤ k, 1 ≤ � ≤ ni } be the set of all

release times of the jobs and

R(t) = {r i
� | i ∈ P(t), 1 ≤ � ≤ ti } (3.6)

Denote now by

Q(t, x, y, z) (3.7)

where t �= 0 and x ≤ y < z, the set of all jobs among
⋃

i∈P(t)
⋃ti

�=1 J i
� that have release times

r i
� ∈

{ [x, z), if i = tmax and � = ti
[y, z), otherwise

(3.8)

We define for t = 0

Q(0, x, y, z) = ∅ (3.9)

for all values x ≤ y < z. Moreover, we define for every vector t and every triple {x, y, z}, such that x ≤ y and
y ≥ z

Q(t, x, y, z) = ∅ (3.10)

Definition 3.1 The set Q(t, x, y, z) �= ∅ of jobs is called feasible, if there exists a feasible schedule of these jobs
in the interval [y, z).

For the case of a feasible set Q(t, x, y, z) �= ∅, denote now by

F(t, x, y, z) (3.11)

the value of an optimal schedule of all jobs of the set Q(t, x, y, z) in the interval [y, z). Due to Lemma 2.3, we
allow the variables y, z in (3.7) and (3.11) to take values only from the set T . Also, due to (3.8), since every job is
released not earlier than x , it suffices to consider that x ∈ R. For an arbitrary y ∈ T , let

r(y) = min{r ∈ R | r ≥ y} (3.12)

be the smallest release time that equals at least y. For simplicity reasons, we define r(y) = max T in the case where
there exists no release time r ∈ R with r ≥ y, where max T is the greatest value of the set T , cf. (2.2). In the
case where Q(t, x, y, z) �= ∅ is not feasible, we define F(t, x, y, z) = ∞. In the case where Q(t, x, y, z) = ∅, we
define F(t, x, y, z) = 0.

The following lemma uses the release times of the jobs of Q(t, x, y, z) in order to decide whether it is feasible,
i.e. whether there exists a feasible schedule of these jobs in the interval [y, z).

Lemma 3.2 (feasibility test) Let r̃1 ≤ r̃2 ≤ . . . ≤ r̃q be the release times of the jobs of Q(t, x, y, z) and let

C1 = max{̃r1, y} + p

C� = max{̃r�, C�−1} + p
(3.13)

for every � ∈ {2, 3, . . . , q}. It holds that Q(t, x, y, z) is feasible if and only if Cq ≤ z.
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Proof The proof is straightforward. The set Q(t, x, y, z) of jobs is feasible if and only if there exists a schedule of
these jobs with makespan Cmax not greater than z. Without loss of generality, in a schedule that minimizes Cmax,
every job is scheduled without preemption at the earliest possible point. In particular, the job with the earliest release
time r̃1 starts at max{̃r1, y}. Suppose that the �− 1 first jobs complete at point C�−1, for some � ∈ {2, 3, . . . , q}. If
the �th job has release time r̃� > C�−1, then this job starts obviously at r̃�. In the opposite case r̃� ≤ C�−1, it starts
at C�−1. Since every job has processing time p, we obtain (3.13) for the completion times of the scheduled jobs
and thus the minimum makespan is Cq . It follows that Q(t, x, y, z) is feasible, i.e. F(t, x, y, z) �= ∞, if and only
if Cq ≤ z. ��

3.2 The Recursive Computation

Consider a vector t �= 0 and a feasible set Q(t, x, y, z) �= ∅ of jobs. Then, y < z by the definition of Q(t, x, y, z).
Furthermore, for every index i ∈ P(t)\{tmax}, if r i

ti /∈ [y, z), it follows that

F(t, x, y, z) = F(t′i , x, y, z) (3.14)

Indeed, in this case J i
ti /∈ Q(t, x, y, z) by (3.8), and thus we can ignore job J i

ti , i.e. we can replace ti by ti − 1.
Then, all jobs of Q(t, x, y, z) have release times according to (3.8) and they are scheduled in the interval [y, z).
Therefore, (3.14) follows.

On the other hand, for i = tmax, if r i
ti /∈ [x, z), then

F(t, x, y, z) = F(t′i , r(y), r(y), z) (3.15)

Indeed, in this case again J i
ti /∈ Q(t, x, y, z) by (3.8), and thus we can ignore job J i

ti , i.e. we can replace again ti by
ti − 1. Then, all jobs of Q(t, x, y, z) are released not earlier than y, i.e. not earlier than r(y), and thus they are all
scheduled in the interval [r(y), z). Therefore, (3.15) follows. Note here that in the extreme case where r(y) ≥ z,
no job of Q(t, x, y, z)\{J i

ti } is released in [y, z), and thus Q(t, x, y, z) = ∅ by (3.8), which is a contradiction to
the assumption that Q(t, x, y, z) �= ∅.

Suppose in the following without loss of generality that J i
ti ∈ Q(t, x, y, z) for every i ∈ P(t).

Let Ci
� denote the completion time of job J i

� , where i ∈ {1, . . . , k} and � ∈ {1, . . . , ni }. Consider now the vector
of the completion times (C1

1 , C1
2 , . . . , Ck

nk
) and the feasible set Q(t, x, y, z) �= ∅. Let C(t, x, y, z) be the restriction

of the vector (C1
1 , C1

2 , . . . , Ck
nk

) on those values j and �, for which J j
� ∈ Q(t, x, y, z). Denote now by S(t, x, y, z)

the optimal schedule of the jobs of Q(t, x, y, z) that lexicographically minimizes the vector C(t, x, y, z) among all
other optimal schedules. In the sequel, we denote S(t, x, y, z) by S, whenever the values t, x, y, z are clear from
the context. Next, we compute in Theorems 3.5 and 3.6 the values F(t, x, y, z). To this end, we provide first the
technical Lemma 3.3 and Corollary 3.4 that will be used in the proof of these theorems. Denote by si and ei the
start and completion time of job J i

ti in S = S(t, x, y, z), respectively. Also, for i = tmax, denote for simplicity J i
ti

and r i
ti by Jtmax and rtmax , respectively.

Lemma 3.3 Suppose that Q(t, x, y, z) �= ∅ is feasible and that J i
ti ∈ Q(t, x, y, z) for some i ∈ P(t). For every

other job J j
� ∈ Q(t, x, y, z)\{J i

ti } with j ≤ i , if J j
� is completed in S at a point C j

� > si , then its release time is

r j
� > si .

Proof The proof will be done by contradiction. Consider a job J j
� ∈ Q(t, x, y, z)\{J i

ti } with j ≤ i and suppose

that J j
� is completed in S at a point C j

� > si . We distinguish the cases C j
� > Ci

ti and C j
� < Ci

ti , respectively.

Suppose that C j
� > Ci

ti and that J j
� is executed in [Ci

ti , z) for a time period of total length L ≤ p, as it is

illustrated in Fig. 2a. If r j
� ≤ si , then we can exchange the execution of J j

� in the interval [Ci
ti , z) with the last part

of total length L of the execution of J i
ti in the interval [si , Ci

ti ). In the resulting schedule S ′, the completion times

C j
� and Ci

ti exchange values, while the completion times of all other jobs remain the same. Since j ≤ i , it holds
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(a)

(b)

Fig. 2 The impossible case r j
� ≤ si , where j ≤ i and C j

� > si

α j ≥ αi and therefore the schedule S ′ is not worse than S. Thus, since S is optimal, S ′ is also optimal. However,

S ′ is lexicographically smaller than S, which is a contradiction to the assumption on S. It follows that job J j
� is

released not earlier than si , i.e. r j
� > si .

Suppose now that C j
� < Ci

ti , as it is illustrated in Fig. 2b. Then, there exists a sufficiently small time period

ε > 0, such that during the time intervals [si , si +ε) and [C j
� −ε, C j

� ) the jobs J i
ti and J j

� are executed, respectively.

If r j
� ≤ si , we can now exchange the execution of the jobs J i

ti and J j
� in these intervals, obtaining a completion time

of J j
� at most C j

� − ε, while the completion times of all other jobs remain the same. Since all weights are positive,

the resulting schedule is better than S, which is a contradiction to its optimality. This implies again that job J j
� is

released not earlier than si , i.e. r j
� > si . ��

Corollary 3.4 Suppose that Q(t, x, y, z) �= ∅ is feasible and that J i
ti ∈ Q(t, x, y, z) for some i ∈ P(t). Then,

every other job J i
� ∈ Q(t, x, y, z)\{J i

ti } is completed in S at a point Ci
� ≤ si .

Proof Consider such a job J i
� , with � < ti and suppose that J i

� is completed at a point Ci
� > si . Then, Lemma 3.3

implies that r i
� > si . On the other side, it holds due to (3.1) that r i

� ≤ r i
ti ≤ si , which is a contradiction. ��

Theorem 3.5 Let Q(t, x, y, z) �= ∅ be feasible and J i
ti ∈ Q(t, x, y, z) for every i ∈ P(t). Suppose that rtmax > y.

Then,

F(t, x, y, z) = F1 = min
s∈(y,z)∩T
s /∈R(t′tmax )

{
F(t′tmax

, r(y), r(y), s) + F(t, x, s, z)
}

(3.16)

Proof First, recall that si and ei denote the start and completion times of the job J i
ti ∈ Q(t, x, y, z) in S =

S(t, x, y, z), for every i ∈ P(t). Due to the assumption that rtmax > y, it follows that also stmax > y.
For every job J j

� ∈ Q(t, x, y, z) it holds j ≤ tmax, due to (3.5). Thus, Lemma 3.3 implies that all jobs

J j
� ∈ Q(t, x, y, z)\{Jtmax}with release times r j

� ≤ stmax are scheduled completely in the interval [y, stmax), while all

jobs J j
� ∈ Q(t, x, y, z)\{Jtmax}with release times r j

� > stmax are scheduled in S completely in the interval [stmax , z).

Note that the extreme case r j
� = stmax is impossible for any job J j

� ∈ Q(t, x, y, z)\{Jtmax}, since otherwise job J j
�

must be scheduled in the empty interval [stmax , stmax), which is a contradiction. That is, stmax /∈ R(t′tmax
).

Since Jtmax is scheduled in the second part [stmax , z) of S, it follows that every job J j
� , which is scheduled in

the first part [y, stmax) of S, has release time r j
� ≥ y, i.e. r j

� ≥ r(y). Thus, the value of this first part of S equals
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F(t′tmax
, r(y), r(y), stmax). Note here that in the extreme case where r(y) ≥ stmax , no job of Q(t, x, y, z)\{Jtmax}

is released in [y, stmax), and thus no job is scheduled in the first part of S, i.e. the value of this part equals
zero. However, in this case, where r(y) ≥ stmax , it holds Q(t′tmax

, r(y), r(y), stmax) = ∅ by (3.10), and thus
F(t′tmax

, r(y), r(y), stmax) = 0. Thus, in any case, the value of the first part of S equals F(t′tmax
, r(y), r(y), stmax).

On the other hand, in the second part [stmax , z) of S, exactly Jtmax and the jobs J j
� ∈ Q(t, x, y, z)\{Jtmax} with

release times r j
� > stmax are scheduled. Thus, since stmax /∈ R(t′tmax

), we can state equivalently that in the second

part [stmax , z) of S, exactly Jtmax and the jobs J j
� ∈ Q(t, x, y, z)\{Jtmax}with release times r j

� ≥ stmax are scheduled.
Therefore, since Jtmax is released not earlier than x , the value of the second part of S equals F(t, x, stmax , z). It
follows that

F(t, x, y, z) = F(t′tmax
, r(y), r(y), stmax)+ F(t, x, stmax , z) (3.17)

Conversely, if the value of (3.17) is finite, then it corresponds to a feasible schedule of the jobs of Q(t, x, y, z) in
the interval [y, z). Thus, since S is assumed to be optimal, the value F(t, x, y, z) is the minimum of the expression
in (3.17) over all possible values s = stmax ∈ (y, z) ∩ T , such that stmax /∈ R(t′tmax

). ��
Theorem 3.6 Let Q(t, x, y, z) �= ∅ be feasible and J i

ti ∈ Q(t, x, y, z) for every i ∈ P(t). Suppose that rtmax ≤ y
and let e = y + p · |Q(t, x, y, z)|. If Q(t, r(e), r(e), z) �= ∅, then

F(t, x, y, z) = min
s∈(y,z)∩T

i∈P(t)\{tmax}
s≥r(y), s /∈R(t′i )

{
F1, F(t′i , x, y, s)+ F(t′′i , r(y), s, z)

}
(3.18)

Otherwise, if Q(t, r(e), r(e), z) = ∅, then

F(t, x, y, z) = min
s∈(y,z)∩T

i∈P(t)\{tmax}
s≥r(y), s /∈R(t′i )

⎧
⎨

⎩

F1,

F(t′i , x, y, s)+F(t′′i , r(y), s, z),
F(t′tmax

, r(y), r(y), e)+ e · αtmax

⎫
⎬

⎭
(3.19)

where F1 is the value computed in (3.16).

Proof Similarly to the proof of Theorem 3.5, let job J i
ti ∈ Q(t, x, y, z) start at point si and complete at point ei in

S = S(t, x, y, z), for every i ∈ P(t). In the case where stmax > y, Theorem 3.5 implies that F(t, x, y, z) = F1,
where F1 is the value computed in (3.16). Suppose in the sequel of the proof that stmax = y. We distinguish in the
following two cases.

Case 1 Suppose that there exists an index i ∈ P(t), such that si ≥ etmax , and let i be the greatest among them. Then,
i < tmax and y < si < z. That is, for every index j ∈ P(t) with j > i , job J j

t j
starts at a point s j ∈ [stmax , etmax)

in S, as it is illustrated in Fig 3a. Then, Lemma 2.1 implies that this job completes also in this interval, i.e.
e j ∈ [stmax , etmax). Furthermore, Corollary 3.4 implies that for every such index j ∈ P(t) (where j > i), all jobs

J j
� ∈ Q(t, x, y, z)\{J j

t j
} are completed at a point C j

� ≤ s j . Then, since s j < si , we obtain that C j
� < si . It follows

that for every job J j
� that is completed at a point C j

� > si , it holds j ≤ i . Thus, Lemma 3.3 implies that all jobs

J j
� ∈ Q(t, x, y, z)\{J i

ti } with release times r j
� ≤ si are scheduled completely in the interval [y, si ), while all jobs

J j
� ∈ Q(t, x, y, z)\{J i

ti } with release times r j
� > si are scheduled in S completely in the interval [si , z). Note

that the extreme case r j
� = si is impossible for any job J j

� ∈ Q(t, x, y, z)\{J i
ti }, since otherwise job J j

� must be
scheduled in the empty interval [si , si ), which is a contradiction. That is, si /∈ R(t′i ). Furthermore, since the release
time of J i

ti is assumed to be r i
ti ≥ y, i.e. r i

ti ≥ r(y), and since si ≥ r i
ti , it follows that si ≥ r(y).

Note that Jtmax is scheduled in the first part [y, si ) of S, since we assumed that y = stmax , while J i
ti is scheduled

in the second part [si , z) of S. Thus, since Jtmax is released not earlier than x , the value of the first part [y, si ) of S
equals F(t′i , x, y, si ).
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(a)

(b)

Fig. 3 The case stmax = y

In the second part [si , z) of S, exactly J i
ti and the jobs J j

� ∈ Q(t, x, y, z)\{J i
ti } with j ≤ i and release times

r j
� > si are scheduled. Thus, since si /∈ R(t′i ), we can state equivalently that in the second part [si , z) of S, exactly

J i
ti and the jobs J j

� ∈ Q(t, x, y, z)\{J i
ti } with j ≤ i and release times r j

� ≥ si are scheduled. Since the release time
of J i

ti is assumed to be r i
ti ≥ y, i.e. r i

ti ≥ r(y), the value of the second part of S equals F(t′′i , r(y), si , z). Note here
that, since r(y) ≤ si < z, the value F(t′′i , r(y), si , z) is well defined. It follows that

F(t, x, y, z) = F(t′i , x, y, si )+ F(t′′i , r(y), si , z) (3.20)

Conversely, if the value of (3.20) is finite, then it corresponds to a feasible schedule of the jobs of Q(t, x, y, z) in
the interval [y, z). Thus, since S is assumed to be optimal, the value F(t, x, y, z) equals (in Case 1) to the minimum
of the expression in (3.20) over all possible values of i ∈ P(t)\{tmax} and s = si ∈ (y, z) ∩ T , such that s /∈ R(t′i )
and s ≥ r(y).

Case 2 Suppose that si < etmax for every i ∈ P(t). Then, Corollary 3.4 implies that for every i ∈ P(t), all jobs
J i
� ∈ Q(t, x, y, z) with � < ti are completed at most at point si in S. Thus, in this case all jobs of Q(t, x, y, z)

are scheduled completely in the interval [y, etmax), as it is illustrated in Fig. 3b. Since the processing time of every
job equals p, the total processing time of all jobs equals p · |Q(t, x, y, z)|. On the other hand, there is no idle
period between y and etmax , since otherwise Jtmax would be scheduled to complete earlier, resulting thus to a better
schedule, which is a contradiction to the optimality of S. Therefore,

etmax = y + p · |Q(t, x, y, z)| (3.21)

Note that, since Q(t, x, y, z) is assumed to be feasible, there exists a feasible schedule of the jobs of Q(t, x, y, z)
in the interval [y, z), and thus, z ≥ etmax = y + p · |Q(t, x, y, z)|. Furthermore, since all jobs of Q(t, x, y, z)
are scheduled completely in the interval [y, etmax), it follows in particular that all jobs of Q(t, x, y, z) are released
strictly before etmax , and thus Q(t, r(etmax), r(etmax), z) = ∅. Note here that, in the extreme case where r(etmax) ≥ z,
again Q(t, r(etmax), r(etmax), z) = ∅ by (3.10).

Now, Lemma 2.1 implies that no part of Jtmax is executed in any time interval [r i
�, Ci

�), where J i
� ∈

Q(t, x, y, z)\{Jtmax}, since otherwise Jtmax would complete before J i
� , which is a contradiction. Thus, the com-

pletion times of all these jobs remain the same if we remove Jtmax from the schedule S. Recall that all jobs
J i
� ∈ Q(t, x, y, z)\{Jtmax} have release times r i

� ≥ y, i.e. r i
� ≥ r(y). Thus, since the weight of Jtmax is αtmax and its

completion time is etmax , it follows in this case that

F(t, x, y, z) = F(t′tmax
, r(y), r(y), etmax)+ etmax · αtmax (3.22)

Note here that in the extreme case where r(y) ≥ etmax , no job of Q(t, x, y, z)\{Jtmax} is released in [y, etmax), and
thus no job except Jtmax is scheduled in S, i.e. F(t, x, y, z) = etmax · αtmax . In this case, where r(y) ≥ etmax , it holds
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Q(t′tmax
, r(y), r(y), etmax) = ∅ by (3.10), and thus F(t′tmax

, r(y), r(y), etmax) = 0. Thus, in any case, the value of
F(t, x, y, z) is given by (3.22).

Conversely, suppose that Q(t, r(etmax), r(etmax), z) = ∅ and that the value of F(t, x, y, z) in (3.22) is
finite, or equivalently, the value F(t′tmax

, r(y), r(y), etmax) is finite, where etmax is given by (3.21). Then, since

Q(t, r(etmax), r(etmax), z) = ∅, all jobs J i
� ∈ Q(t, x, y, z)\{Jtmax} have release times r i

�, such that r(y) ≤ r i
� < etmax .

If F(t′tmax
, r(y), r(y), etmax) = 0, then Q(t′tmax

, r(y), r(y), etmax) = ∅. Therefore, since also Q(t, r(etmax),

r(etmax), z) = ∅, it follows that Q(t, x, y, z) = {Jtmax}, and thus F(t, x, y, z) = etmax · αtmax corresponds to a feasi-
ble schedule of Q(t, x, y, z) in [y, z).

In the opposite case, where F(t′tmax
, r(y), r(y), etmax) �= 0, this value corresponds to a feasible schedule S0 of

the jobs of the set Q(t, x, y, z)\{Jtmax} in the interval [y, etmax). Since the processing time of each job is p, the
total processing time of these jobs in [y, etmax) is p · (|Q(t, x, y, z)| − 1). Thus, due to (3.21), the machine has idle
periods in the interval [y, etmax) of total length p (in the schedule S0). Therefore, since rtmax ≤ y by the assumption,
we can schedule the job Jtmax in these idle periods, obtaining a feasible schedule of all jobs of Q(t, x, y, z) in the
interval [y, etmax) with value F(t, x, y, z), as it is expressed in (3.22). That is, if Q(t, r(etmax), r(etmax), z) = ∅, and
if the value of (3.22) is finite, then this value corresponds to a feasible schedule of the jobs of Q(t, x, y, z) in the
interval [y, z). Thus, since S is assumed to be optimal, the value F(t, x, y, z) equals (in Case 2) to the expression
in (3.22) for etmax = y + p · |Q(t, x, y, z)|.

Summarizing now Cases 1 and 2, and since S is optimal, it follows that the optimal value F(t, x, y, z) is the
minimum among the value F1 (computed in (3.16)) and the values of the expressions in (3.20) and (3.22), over all
possible values s = si ∈ (y, z) ∩ T and i ∈ P(t)\{tmax}, such that s /∈ R(t′i ) and s ≥ r(y). This completes the
theorem. ��

3.3 The Algorithm

Since the start and endpoints of the jobs in an optimal schedule belong to T , the value of such a schedule equals

F(t∗, min T, min T, max T ) (3.23)

where

t∗ = (n1, n2, . . . , nk) (3.24)

and min T , max T denote the smallest and the greatest value of the set T , respectively, cf. (2.2). Note that min T
coincides with the smallest release time. The dynamic programming Algorithm 1 follows now by Lemma 3.2 and
Theorems 3.5 and 3.6. The correctness and the complexity of this algorithm is proved in the next theorem.

Note that, as a preprocessing step, we partition the n jobs into the sets J i = {J i
1, J i

2, . . . , J i
ni
}, i ∈ {1, . . . , k},

such that job J i
� has weight αi for every � ∈ {1, . . . , ni }, and that, for every i , the jobs J i

� are sorted with respect to
� according to (3.1). This can be done clearly in O(n log n) time.

Theorem 3.7 An optimal schedule can be computed in O
(( n

k + 1
)k

n8
)

time and O
(( n

k + 1
)k

n6
)

space.

Proof We present Algorithm 1 that computes the value of an optimal schedule of the given n jobs. A slight modifi-
cation of this algorithm returns an optimal schedule, instead of its value only. In lines 1–4, Algorithm 1 initializes
F(0, x, y, z) = 0 for all possible values of x, y, z, such that x ≤ y < z, as well as F(t, x, y, z) = 0 for all possible
values of t, x, y, z, such that x ≤ y and y ≥ z, cf. (3.9) and (3.10). It iterates further for every t between 0 and t∗
in lexicographical order and for every possible x, y, z, such that x ≤ y < z. For every such tuple (t, x, y, z), the
algorithm computes the value F(t, x, y, z) as follows. At first, it computes the set Q(t, x, y, z) in line 8. If this set
is empty, it defines F(t, x, y, z) = 0. Otherwise, it checks in line 10 its feasibility, using Lemma 3.2 and, if it is
not feasible, it defines F(t, x, y, z) = ∞. In the case of feasibility of the set Q(t, x, y, z), the algorithm checks
in lines 13–19 the release times of the jobs J i

ti for all i ∈ P(t). If at least one of these jobs does not belong to
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Algorithm 1 Compute the value of an optimal schedule with n jobs
1: for every x ∈ R and y, z ∈ T , with x ≤ y < z do
2: F(0, x, y, z)← 0 {initialization}
3: for every t between 0 and t∗, x ∈ R and y, z ∈ T , with x ≤ y and y ≥ z do
4: F(t, x, y, z)← 0 {initialization}

5: for every t between 0 and t∗ in lexicographical order do
6: for every x ∈ R and z ∈ T with x < z do
7: for y = z downto x (with y ∈ T and y �= z) do

8: if Q(t, x, y, z) = ∅ then
9: F(t, x, y, z)← 0
10: else if Q(t, x, y, z) is not feasible then
11: F(t, x, y, z)←∞
12: else

13: for every i ∈ P(t) do
14: if i = tmax then
15: if r i

ti /∈ [x, z) then
16: F(t, x, y, z)← F(t′i , r(y), r(y), z)
17: else {i �= tmax}
18: if r i

ti /∈ [y, z) then
19: F(t, x, y, z)← F(t′i , x, y, z)

20: if F(t, x, y, z) has not been computed in lines 16 or 19 then
21: Compute F(t, x, y, z) by Theorems 3.5 and 3.6

22: return F(t∗, min T, min T, max T )

Q(t, x, y, z), it computes F(t, x, y, z) recursively in lines 16 and 19, due to (3.15) and (3.14), respectively. Finally,
if all jobs J i

ti , i ∈ P(t) belong to Q(t, x, y, z), i.e. if the value F(t, x, y, z) has not been computed in the lines 16
or 19, the algorithm computes F(t, x, y, z) in line 21 by Theorems 3.5 and 3.6.

Note here that, for every i ∈ P(t), the vectors t′i and t′′i are lexicographically smaller than t. Thus, the values
F(t′i , ·, ·, ·) and F(t′′i , ·, ·, ·), which are used in lines 16 and 19, as well as in Eqs. (3.16), (3.18), and (3.19), have
been already computed at a previous iteration of the algorithm. Furthermore, since we iterate for y in line 7 from
the value z downwards to the value x , the values F(t, x, s, z), for every s with y < s < z, cf. Eq. (3.16), have been
also computed at a previous iteration of the algorithm. Thus, all recursive values that are used by Theorems 3.5
and 3.6, cf. Eqs. (3.16), (3.18), and (3.19), have been already computed at a previous iteration of the algorithm.
This completes the correctness of Algorithm 1.

The running time of the algorithm can be computed as follows. For each vector t = (tk, tk−1, . . . , t1), the set
P(t) = {i | ti > 0, 1 ≤ i ≤ k} and the value tmax = max P(t) can be computed in linear O(n) time, since k ≤ n.
Thus, the computation of the set Q(t, x, y, z) in line 8 can be done in linear time as well. Indeed, since y < z, we
can check in linear time whether t = 0, cf. (3.9), while we can check also in linear time in (3.8) the release times
of the jobs

⋃
i∈P(t)

⋃ti
�=1 J i

� . The feasibility of Q(t, x, y, z) in line 10 can be checked in O(n log n) time using
Lemma 3.2, by sorting first increasingly the release times r̃1, r̃2, . . . , r̃q of the jobs in Q(t, x, y, z) and then, by
computing in linear time the value Cq . The execution of lines 13–19 can be simply done in linear time, by checking
the release times of the jobs J i

ti , for all i ∈ P(t).
For the computation of F(t, x, y, z) by Theorems 3.5 and 3.6, the algorithm uses for at most every s ∈ T and

every i ∈ P(t)\{tmax} the values of one or two smaller instances that have been already computed at a previous
iteration. This takes O(n3) time, since T has at most n2 elements and P(t) has at most n elements. Furthermore, the
sets R(t′tmax

) and R(t′i ) in the statements of these theorems can be computed in linear O(n) time by (3.6). Moreover,
the set Q(t, r(e), r(e), z) in the statement of Theorem 3.6 can be computed in linear O(n) time. Indeed, we can
check in linear time whether t = 0 or whether r(e) ≥ z, cf. (3.9) and (3.10), while we can check also in linear time
in (3.8) the release times of the jobs

⋃
i∈P(t)

⋃ti
�=1 J i

� . Thus, the algorithm needs O(n3) time for the execution of
the lines 8–21.
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There are in total
∏k

i=1 (ni + 1) possible values of the vector t, where it holds
∑k

i=1(ni + 1) = n + k. The
product

∏k
i=1(ni + 1) is maximized, when (ni + 1) = n+k

k for every i = 1, . . . , k. Thus, there are in total at

most O
(( n

k + 1
)k

)
vectors t and O

(( n
k + 1

)k
n5

)
possible tuples (t, x, y, z), since x ∈ R can take at most O(n)

possible values and y, z ∈ T can take at most O(n2) possible values each. Since the lines 8–21 are executed for

all these tuples, the algorithm needs for the lines 5–21 O
(( n

k + 1
)k

n8
)

time. Furthermore, the initialization of the

values F(0, x, y, z) for all possible x, y, z in lines 1–2 takes O(n5) time. Finally, the initialization of the values

F(t, x, y, z) in lines 3–4 takes O
(( n

k + 1
)k

n5
)

time, since it is executed for at most all possible tuples (t, x, y, z).

Summarizing, the running time of Algorithm 1 is O
(( n

k + 1
)k

n8
)

.

The space complexity of Algorithm 1 can be computed as follows. For the computation of the optimal value,

the algorithm stores for every tuple (t, x, y, z) the value F(t, x, y, z) in an array of size O
(( n

k + 1
)k

n5
)

. The

storage of the release and completion times in Lemma 3.2 and Theorem 3.5 can be done in an array of linear size
O(n). In order to build the optimal schedule, instead of its value, we need to store at every entry of these arrays
the corresponding schedule. For each one of them we store the start and completion times of the jobs in an array
of size O(n). Then, the optimal schedule can be easily computed by sorting these start and completion times in

non-decreasing order, storing the interrupted jobs in a stack. This implies space complexity O
(( n

k + 1
)k

n6
)

. ��

4 Concluding Remarks

In this paper we presented the first polynomial algorithm for the preemptive scheduling of equal-length jobs on a
single machine, parameterized on the number k of different weights. The objective is to minimize the sum of the
weighted completion times

∑n
i=1 wi Ci of the jobs, where wi and Ci is the weight and the completion time of job Ji .

The complexity status of the generalized version with an arbitrary number of positive weights on a single machine
remains an interesting open question for further research.
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