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Abstract

In this paper we give precise solutions to problems posed by Wang,
An, Pan, Wang and Qu and by Hsieh, Lin and Huang. In par-
ticular, we show that Qk

n is bipanconnected and edge-bipancyclic,
when k ≥ 3 and n ≥ 2, and we also show that when k is odd,
Qk

n is m-panconnected, for m = n(k−1)+2k−6
2 , and (k − 1)-pancyclic

(these bounds are optimal). We introduce a path-shortening tech-
nique, called progressive shortening, and strengthen existing results,
showing that when paths are formed using progressive shortening then
these paths can be efficiently constructed and used to solve a problem
relating to the distributed simulation of linear arrays and cycles in
a parallel machine whose interconnection network is Qk

n, even in the
presence of a faulty processor.
keywords: interconnection networks; k-ary n-cubes; bipanconnectiv-
ity; bipancyclicity.

1 Introduction

The choice of interconnection network is crucial in the design of a distributed-
memory multiprocessor. As to which network is chosen depends upon a
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number of factors relating to the topological, algorithmic and communica-
tion properties of the network and the types of problems to which the re-
sulting computer is to be applied. One of the most popular interconnection
networks is undoubtedly the n-dimensional hypercube Qn. Some of its pleas-
ing properties, with regard to parallel computation, include: it is vertex-
and edge-symmetric; it is Hamiltonian; it has diameter n; it has a recursive
decomposition; and it contains, or ‘nearly’ contains (as subgraphs), almost
all interconnection networks currently vogue in parallel computing (see [18]
for these results and more on the hypercube). Some of the commercial ma-
chines whose underlying topology is based on the hypercube are the Cosmic
Cube [23], the Ametek S/14 [2], the iPSC [10, 11], the Ncube [7, 11] and the
CM-200 [8].

However, every vertex of Qn has degree n, and, consequently, as n in-
creases so does the degree of every vertex. High degree vertices in intercon-
nection networks can lead to technological problems in parallel computers
whose underlying topology is that of the said interconnection network. One
method of circumventing this problem, so as to still retain a ‘hypercube-like’
interconnection network, is to build parallel computers so that the underlying
topology is the k-ary n-cube Qk

n. The k-ary n-cube Qk
n is similar in essence

to the hypercube, but by a judicious choice of k and n we can include a large
number of vertices yet keep the degree of each vertex fixed. For example,
the hypercube Q12 has 4096 vertices and every vertex has degree 12. How-
ever, Q16

3 has 4096 vertices and every vertex has degree 6. Of course, one
usually loses out in some other respect (for example, in terms of diameter)
but often this loss is not too catastrophic. The k-ary n-cube Qk

n has not
been investigated to the same extent as the hypercube, but it is known to
have the following properties (amongst many others): it is vertex- and edge-
symmetric [3]; it is Hamiltonian [4, 6]; it has diameter n⌊k/2⌋ [4, 6]; it has
a recursive decomposition; and it contains many important interconnection
networks such as cycles (of certain lengths) [3], meshes (of certain dimen-
sions) [4] and even hypercubes (of certain dimensions) [6]. Machines whose
underlying topology is based on a k-ary n-cube include the Mosaic [24], the
iWARP [5], the J-machine [21], the Cray T3D [16] and the Cray T3E [1].

Of interest to us in this paper are the different paths and cycles em-
bedded within k-ary n-cubes. Path and cycle networks are fundamental in
parallel computing; not only is there a multitude of algorithms specifically
designed for linear arrays of processors and cycles of processors but paths
and cycles appear as data structures in many more algorithms for parallel
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machines whose processors are inter-connected in a variety of topologies. For
example, having a collection of processors connected in a cycle means that
all-to-all message passing can be undertaken by “daisy-chaining” messages
around the cycle. Of particular interest to us are questions relating to Hamil-
tonicity, pancyclicity, panconnectivity, bipancyclicity and bipanconnectivity
(these concepts are defined in the next section). These properties can be
described as ‘strong Hamiltonicity’ properties and their existence in an in-
terconnection network enables a much higher degree of flexibility with regard
to the simulation of linear arrays of processors or cycles of processors.

The notions in the preceding paragraph have been investigated in the
context of a number of interconnection networks: for example, in crossed
cubes [12, 31], Möbius cubes [14], augmented cubes [20], alternating group
graphs [9], star graphs [29], bubble-sort graphs [17], and in hypercubes and
hypercube-like networks [13, 19, 22, 25, 26, 28, 30]. As regards k-ary n-cubes,
these notions have been considered in [15, 27]. In particular, it was proven
in [27]: that Qk

2 is almost-Hamiltonian connected, bipanconnected and bi-
pancyclic; that Qk

n is almost-Hamiltonian connected, for any k; and that Qk
n

is Hamiltonian-connected, for odd k. Recently, it has been proven in [15]
that Q3

n is edge-pancyclic. It was posed as an open problem in [27] as to
whether their results on bipanconnectivity and bipancyclicity for Qk

2 could
be extended to Qk

n, for arbitrary n, and it was posed as an open problem in
[15] as to whether their results on panconnectivity and pancyclicity could be
extended to Qk

n, for arbitrary k. In this paper, we provide precise answers
to both these questions. In addition, we show that when k is odd, Qk

n is

m-panconnected, for m = n(k−1)+2k−6
2

, and (k − 1)-pancyclic (these bounds
are optimal). We also strengthen the results in [15, 27] by introducing a
path-shortening technique, called progressive shortening, and show that the
construction of paths using this technique enables us to efficiently construct
paths in a distributed fashion and so solve a problem relating to the dis-
tributed simulation of linear arrays and cycles in a parallel machine whose
interconnection network is Qk

n, even in the presence of a faulty processor
(even in Qk

2, the solution to this problem is not possible using the paths
constructed in [27]).

In the next section, we present some basic definitions and results, before
improving the constructions from [27] in Qk

2 in Section 3. In Section 4, we
look at the general case when k is even, and in Section 5 when k is odd.
We outline our application in Section 6 before presenting our conclusions in
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Section 7.

2 Basic definitions and results

The k-ary n-cube Qk
n, for k ≥ 3 and n ≥ 2, has vertex set {0, 1, . . . , k − 1}n,

and there is an edge ((un−1, un−2, . . . , u0), (vn−1, vn−2, . . . , v0)) if, and only if,
there exists d ∈ {0, 1, . . . , n− 1} such that min{|ud − vd|, k − |ud − vd|} = 1,
and ui = vi, for every i ∈ {0, 1, . . . , n− 1} \ {d}. Many structural properties
of k-ary n-cubes are known, but of particular relevance for us is that a k-ary
n-cube is vertex-symmetric; that is, given any two distinct vertices v and v′

of Qk
n, there is an automorphism of Qk

n mapping v to v′. Throughout, we
assume that addition on tuple elements is modulo k. The parity of a vertex
(vn−1, vn−2, . . . , v0) of Qk

n is defined to be (Σn−1
i=0 vi mod 2) (note that if k is

even then every edge of Qk
n joins an even parity vertex to an odd parity

vertex).
An index d ∈ {0, 1, . . . , n − 1} is often referred to as a dimension. We

can partition Qk
n over dimension d by fixing the dth element of any vertex

tuple at some value a, for every a ∈ {0, 1, . . . , k − 1}. This results in k
copies Qd(0), Qd(1), . . . , Qd(k−1) of Qk

n−1 (with Qd(a) obtained to fixing the
dth element at a), with corresponding vertices in Qd(0), Qd(1), . . . , Qd(k−1)
joined in a cycle of length k (in dimension d). Such a partition proves to be
extremely useful.

It has long been known that every k-ary n-cube Qk
n is Hamiltonian, i.e.,

contains a cycle passing through every vertex exactly once. A Hamiltonian
path in a graph is a path joining two vertices on which every vertex of the
graph appears exactly once, and a graph is Hamiltonian-connected if there
is a Hamiltonian path joining any pair of distinct vertices. Note that any
(non-trivial) bipartite graph cannot be Hamiltonian-connected, though there
might exist almost-Hamiltonian paths , i.e., paths joining pairs of distinct
vertices upon which all but one of the vertices of the graph appear; a solitary
vertex not appearing on an almost-Hamiltonian path is called the residual
vertex . Irrespective of whether a graph is bipartite or not, we say that a
graph is almost-Hamiltonian-connected if there is a Hamiltonian path or an
almost-Hamiltonian path joining any pair of distinct vertices. It is proven in
[27] that every k-ary n-cube Qk

n is almost-Hamiltonian-connected, and that
if k is odd then Qk

n is Hamiltonian-connected.
We say that a graph G on n vertices is pancyclic (resp. m-pancyclic) if
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it contains a cycle of every possible length between 3 and n (resp. m and
n). The graph G is almost-pancyclic if it contains a cycle of every possible
length between 4 and n, and bipancyclic if it contains a cycle of every possible
even length between 4 and n (the definition of bipancyclicity is intended
primarily for bipartite graphs but can be applied to any graph). A graph G
is edge-bipancyclic if there exists an edge e of G such that e lies on a cycle
of every even length between 4 and n. The graph G is panconnected (resp.
m-panconnected) if for any pair of distinct vertices u and v, there is a path
joining u and v of every length between d(u, v) (resp. m > d(u, v)) and n−1,
where d(u, v) is the length of a minimal length path in G joining u and v. The
graph G is bipanconnected if for any pair of distinct vertices u and v, there is
a path joining u and v of every length from {l : l = d(u, v) + 2i, where 0 ≤

i ≤ n−d(u,v)
2

}. It is proven in [27] that Qk
2 is bipanconnected and (edge-

) bipancyclic; however, as to whether Qk
n, for n ≥ 3, is bipanconnected

or bipancyclic was left as an open question. However, in relation to this
question, it was proven in [15] that Q3

n is edge-pancyclic, for all n ≥ 2.
Our final definition concerns the alteration of paths joining two distinct

vertices in Qk
n. Let u and v be distinct vertices of Qk

n and let ρ be a path
joining u to v of length m, where m−d(u, v) is even. Suppose that there are
paths ρd(u,v), ρd(u,v)+2, . . . , ρm = ρ such that:

• the path ρi joins u and v and is of length i, for each i = d(u, v),
d(u, v) + 2, . . . , m

• for each i = d(u, v), d(u, v) + 2, . . . , m− 1, the path ρi+1 is of the form

u = u0, u1, . . . , ui+1 = v

with ρi of the form

u = u0, u1, . . . , uj, uj+3, uj+4, . . . , ui+1 = v,

for some j ∈ {0, 1, . . . , i − 2}.

Then we say that ρ can be progressively shortened to obtain paths of all
lengths from {l : l = d(u, v), d(u, v) + 2, . . . , m}. As we shall see, it will be
crucial that our paths can be progressively shortened.
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3 Existing bipanconnectivity results

The result from [27] that Qk
2 is bipanconnected (irrespective of whether k

is odd or even) is important to our forthcoming results (as the base case
of inductions). However, we need to refine the proof from [27] that Qk

2 is
bipanconnected in order to obtain a stronger result, involving progressive
shortening, and so that we can apply this stronger result later. We remark
that it is also crucial that any residual vertex is as stated in Proposition 1.
Our stronger result is as follows.

Proposition 1 Let k ≥ 3 and let u and v be distinct vertices of Qk
2.

1. If k + d(u, v) is odd then there exists a Hamiltonian path joining u and
v such that this path can be progressively shortened to obtain paths of

all lengths from {d(u, v) + 2i : 0 ≤ i ≤ (k2
−1−d(u,v))

2
}.

2. If k+d(u, v) is even then there exists an almost-Hamiltonian path join-
ing u and v such that the residual vertex is adjacent to v and such that
this path can be progressively shortened to obtain paths of all lengths

from {d(u, v) + 2i : 0 ≤ i ≤ (k2
−2−d(u,v))

2
}.

In particular, Qk
2 is bipannconnected.

Before we prove Proposition 1, let us illustrate why the proof from [27]
that Qk

2 is panconnected will not suffice. Consider Case (a) of Fig. 2 in [27] (in
this case, k is even). We have reproduced this figure in Fig. 1(a). The authors
claim (in a statement prior to Theorem 3) that the almost-Hamiltonian path
joining u and v can be shortened to a path of length d(u, v) so that paths of
lengths d(u, v), d(u, v)+2, . . . , k2−2 are obtained, and this is indeed the case.
However, regard the path from u to v as a curve on the plane and close this
curve as shown in Fig. 1 with the dotted line. No matter how we progressively
shorten the almost-Hamiltonian path, the residual vertex (shaded in grey)
must lie inside the closed curve, and hence we cannot shorten the almost-
Hamiltonian path to a path of length d(u, v) (as any such path must lie within
the top-left shaded grid). We have corrected this deficiency in Fig. 1(b).

Similarly, the cases in Fig. 2(c) and Fig. 3(d) in [27] are deficient in the
same way, and have been reproduced in Fig. 2(a,c). These deficiencies are
corrected in Fig. 2(b,d). Thus, Proposition 1 follows (as all other cases in
[27] are such that the paths can be progressively shortened).
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Figure 1. Case (a) of Fig. 2 of [27] and its correction.
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Figure 2. Other cases from [27] and their corrections.
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4 The general case when k is even

We begin by examining whether Qk
n is bipanconnected or not when k is even

(we reiterate that Qk
n is bipartite when k is even). As remarked earlier, this

question was posed as an open problem by Wang, An, Pan, Wang and Qu in
[27]. We answer this question precisely.

Theorem 2 Let k ≥ 4 and n ≥ 2, with k even, and let u and v be distinct
vertices of Qk

n.

1. If d(u, v) is odd then there exists a Hamiltonian path joining u and v
such that this path can be progressively shortened to obtain paths of all
odd lengths between d(u, v) and kn − 1, inclusive.

2. If d(u, v) is even then there exists an almost-Hamiltonian path joining
u and v such that the residual vertex is adjacent to v and such that this
path can be progressively shortened to obtain paths of all even lengths
between d(u, v) and kn − 2, inclusive.

In particular, Qk
n is bipannconnected.

Proof The vertex-symmetry of Qk
n means that, w.l.o.g., we may suppose

that u = (0, 0, . . . , 0) and v = (vn−1, vn−2, vn−3, . . . , v0), where vi ≤ k
2
, for

i = 0, 1, . . . , n − 1, and where v 6= (vn−1, 0, . . . , 0). For brevity, denote vn−1

as a.
Let ui = (i, 0, 0, . . . , 0), for 0 ≤ i ≤ k − 1; hence, u = u0 and v 6= ua.

Partition Qk
n over dimension n − 1 to obtain Qk

n(0), Qk
n(1), . . . , Qk

n(k − 1).
We proceed by induction on n. There are two cases, according to whether
d(ua, v) is odd or even.

Case (i) d(ua, v) is odd.

So, by the induction hypothesis applied to Qk
n(a), there exists a Hamiltonian

path ρa from ua to v in Qk
n(a) which can be progressively shortened to obtain

paths of all odd lengths between d(ua, v) = d(u, v)−a and kn−1−1, inclusive.
Note that if the parity of v is even (resp. odd) then a is odd (resp. even).

Denote the vertex (i, vn−2, vn−3, . . . , v0) as vi, for i ∈ {0, 1, . . . , k − 1};
so, v = va. For each i ∈ {0, 1, . . . , k − 1} \ {a}, let ρi ∈ Qk

n(i) be obtained
from ρa by setting the first component of every vertex of ρa at i. Note that
corresponding vertices of the paths ρ0, ρ1, . . . , ρk−1 induce cycles of length k
in Qk

n, e.g., u0, u1, . . . , uk−1, u0 is a cycle of length k, as is v0, v1, . . . , vk−1, v0.
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In particular, the edges of these induced cycles and the edges of the paths
ρ0, ρ1, . . . , ρk−1 yield a k × kn−1 grid, with rows 1, 2, . . . , k and columns
1, 2, . . . , m, where m = kn−1, with ‘wrap-around’ column edges. Refer to
the vertices by their row-column co-ordinates in this grid; so, for example, u
is the vertex (1, 1) and v is the vertex (a + 1, m).

Sub-case (i.a) Suppose that a is even (and so v lies on odd row a + 1).
Consider the path ρ from u to v defined as:

(1, 1), (2, 1), . . . , (k, 1), (k, 2), (k − 1, 2), . . . , (1, 2),

(1, 3), (2, 3), . . . , (k, 3), (k, 4), (k − 1, 4), . . . , (1, 4),

. . . , (1, m − 3), (2, m − 3), . . . , (k, m − 3), (k, m − 2),

(k − 1, m − 2), . . . , (1, m− 2), (1, m− 1), (k, m− 1),

(k − 1, m − 1), . . . , (a + 2, m − 1), (a + 2, m), (a + 3, m), . . . ,

(k − 1, m), (k, m), (1, m), (2, m), (2, m− 1), (3, m− 1), (3, m),

(4, m), (4, m− 1), . . . , (a, m), (a, m − 1), (a + 1, m − 1), (a + 1, m).

The path ρ is Hamiltonian and can be visualized as in Fig. 3(a). Furthermore,
it can trivially be progressively shortened to obtain paths of all odd lengths
between kn−1 − 1 + a and kn − 1 (inclusive), and so that the path of length
kn−1 − 1+ a is the path ρ0 in Qk

n(0), from u to v0, extended with the path in
column m of length a to vertex v. By above, the path ρ0 can be progressively
shortened to obtain paths of all odd lengths between d(u, v0) = d(u, v) − a
and kn−1 − 1, and we obtain the required result.
Sub-case (i.b) Suppose that a is odd (and so v lies on even row a + 1 ≥ 2).
Consider the path ρ from u to v defined as:

(1, 1), (2, 1), . . . , (k, 1), (k, 2), (k − 1, 2), . . . , (1, 2),

(1, 3), (2, 3), . . . , (k, 3), (k, 4), (k − 1, 4), . . . , (1, 4),

. . . , (1, m− 3), (2, m− 3), . . . , (k, m− 3), (k, m − 2),

(k − 1, m − 2), . . . , (1, m− 2), (1, m− 1), (k, m− 1),

(k − 1, m − 1), . . . , (a + 2, m − 1), (a + 2, m),

(a + 3, m), . . . , (k − 1, m), (k, m), (1, m), (2, m),

(2, m − 1), (3, m − 1), (3, m), (4, m), (4, m− 1), . . . ,

(a, m − 1), (a, m), (a + 1, m)

(note that the vertex (a + 1, m− 1) does not appear on ρ).
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Figure 3. The different cases when d(ua, v) is odd.

The path ρ is almost-Hamiltonian and can be visualized as in Fig. 3(b).
Furthermore, it can trivially be progressively shortened to obtain paths of
all even lengths between kn−1 − 1 + a and kn − 2, and so that the path of
length kn−1 − 1 + a is the path ρ0 in Qk

n(0), from u to v0, extended with the
path in column m of length a from v0 to v. By above, the path ρ0 can be
progressively shortened to obtain paths of all odd lengths between d(u, v0)
and kn−1 − 1. As d(u, v) = d(u, v0) + a and the vertex (a + 1, m − 1) is
adjacent to v, we obtain the required result.

Case (ii) d(ua, v) is even.

So, by the induction hypothesis applied to Qk
n(a), there exists an almost-

Hamiltonian path ρa from ua to v in Qk
n(a) which can be progressively short-

ened to obtain paths of all even lengths between d(ua, v) = d(u, v) − a and
kn−1 − 2, and so that the residual vertex of the almost-Hamiltonian path ρa

is adjacent to v. Note that if the parity of v is even (resp. odd) then a is
even (resp. odd).

For each i ∈ {0, 1, . . . , k − 1} \ {a}, let ρi ∈ Qk
n(i) be obtained from

ρa by setting the first component of every vertex of ρa at i. As was the
case in Case (i), corresponding vertices of the paths ρ0, ρ1, . . . , ρk−1 induce
cycles of length k in Qk

n. In particular, the edges of these induced cycles
and the edges of the paths ρ0, ρ1, . . . , ρk−1 yield a k × (kn−1 − 1) grid, with
rows 1, 2, . . . , k and columns 1, 2, . . . , m − 1, where m = kn−1, with ‘wrap-
around’ column edges. Furthermore, if we denote the residual vertex of ρi
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in Qk
n(i) by ri then there is an edge (vi, ri) in Qk

n, for i = 0, 1, . . . , k − 1;
moreover, r0, r1, . . . , rk−1, r0 is a cycle (this is why we focus on the adjacency
relationship between the residual vertex and the vertex v, as in the statement
of the result). Thus, we have a k×m grid with ‘wrap-around’ column edges,
just as we had in Case (i); as before, we refer to the vertices as row-column
pairs.

Sub-case (ii.a) Suppose that a is even (and so v lies on odd row a + 1 ≥ 1
and on column m − 1). Consider the path ρ from u to v defined as:

(1, 1), (2, 1), . . . , (k, 1), (k, 2), (k − 1, 2), . . . , (1, 2),

(1, 3), (2, 3), . . . , (k, 3), (k, 4), (k − 1, 4), . . . , (1, 4),

. . . , (1, m− 3), (2, m− 3), . . . , (k, m− 3), (k, m − 2),

(k, m − 1), (k, m), (k − 1, m), . . . , (a + 2, m), (a + 2, m − 1),

(a + 3, m − 1), . . . , (k − 1, m − 1), (k − 1, m − 2),

(k − 2, m− 2), . . . , (1, m− 2), (1, m− 1), (1, m),

(2, m), (2, m− 1), (3, m− 1), (3, m), (4, m),

(4, m − 1), . . . , (a, m), (a, m − 1), (a + 1, m − 1)

(note that the vertex (a + 1, m) does not appear on ρ). The path ρ is
almost-Hamiltonian and can be visualized as in Fig. 4(a). Furthermore, it
can trivially be progressively shortened to obtain paths of all even lengths
between kn−1 − 2+ a and kn − 2, and so that the path of length kn−1 − 2+ a
is the path ρ0 in Qk

n(0), from u to v0, extended with the path in column
m − 1 of length a from v0 to v. By above, the path ρ0 can be progressively
shortened to obtain paths of all even lengths between d(u, v0) and kn−1 − 2.
As d(u, v) = d(u, v0)+a and the vertex (a+1, m) is adjacent to v, we obtain
the required result.
Sub-case (ii.b) Suppose that a is odd (and so v lies on even row a + 1 ≥ 2
and on column m − 1). Consider the path ρ from u to v defined as:

(1, 1), (2, 1), . . . , (k, 1), (k, 2), (k − 1, 2), . . . , (1, 2),

(1, 3), (2, 3), . . . , (k, 3), (k, 4), (k − 1, 4), . . . , (1, 4),

. . . , (1, m− 3), (2, m− 3), . . . , (k, m − 3), (k, m− 2),

(k − 1, m − 2), . . . , (1, m − 2), (1, m− 1), (1, m), (2, m),

(2, m− 1), (3, m− 1), (3, m), (4, m), (4, m− 1), . . . ,

(a, m − 1), (a, m), (a + 1, m), (a + 2, m), . . . , (k − 1, m), (k, m),

(k, m − 1), (k − 1, m − 1), . . . , (a + 2, m − 1), (a + 1, m − 1).
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Figure 4. The different cases when d(ua, v) is even.

The path ρ is Hamiltonian and can be visualized as in Fig. 4(b). Further-
more, it can trivially be progressively shortened to obtain paths of all odd
lengths between kn−1 − 2 + a and kn − 1, and so that the path of length
kn−1 − 2 + a is the path ρ0 in Qk

n(0), from u to v0, extended with the
path in column m − 1 of length a from v0 to v. By above, the path ρ0

can be progressively shortened to obtain paths of all even lengths between
d(u, v0) = d(u, v) − a and kn−1 − 2; thus, we obtain the required result.

All that remains is to deal with the base case of the induction. However,
the base case is handled by Proposition 1.

The following is an immediate corollary of Theorem 2.

Corollary 3 Let k ≥ 4 and n ≥ 2, with k even. Qk
n is edge-bipancyclic.

5 The general case when k is odd

We now examine whether Qk
n is bipanconnected when k is odd. As remarked

earlier, this question was posed as an open problem by Wang, An, Pan, Wang
and Qu in [27]. We answer this question precisely; in fact, we prove even
more as we shall see later.

12



Theorem 4 Let k ≥ 3 and n ≥ 2, with k odd, and let u and v be distinct
vertices of Qk

n.

1. If d(u, v) is even then there exists a Hamiltonian path joining u and v
such that this path can be progressively shortened to obtain paths of all
even lengths between d(u, v) and kn − 1, inclusive.

2. If d(u, v) is odd then there exists an almost-Hamiltonian path joining u
and v such that the residual vertex is adjacent to v and such that this
path can be progressively shortened to obtain paths of all odd lengths
between d(u, v) and kn − 2, inclusive.

In particular, Qk
n is bipannconnected.

Proof The proof is very similar in structure to that of Theorem 2 and
we adopt the exact same notation as in that proof. Again, we proceed by
induction on n and there are two cases, according to whether d(ua, v) is odd
or even.

Case (i) d(ua, v) is even.

So, by the induction hypothesis, there exists a Hamiltonian path ρa from ua

to v in Qk
n(a) which can be progressively shortened to obtain paths of all

even lengths between d(ua, v) = d(u, v)−a and kn−1−1, inclusive. As in the
proof Theorem 2, the paths ρ0, ρ1, . . . , ρk−1 yield a k × kn−1 grid, with rows
1, 2, . . . , k and columns 1, 2, . . . , m, where m = kn−1, with ‘wrap-around’
column edges.

Sub-case (i.a) Suppose that a is even (and so v lies on odd row a + 1 ≥ 1
and on column m). Consider the path ρ from u to v defined as:

(1, 1), (2, 1), . . . , (k, 1), (k, 2), (k − 1, 2), . . . , (1, 2),

(1, 3), (2, 3), . . . , (k, 3), (k, 4), (k − 1, 4), . . . , (1, 4), . . . ,

(k, m − 3), (k − 1, m − 3), . . . , (1, m− 3), (1, m− 2),

(2, m− 2), . . . , (k, m− 2), (k, m − 1), (k, m), (k − 1, m),

(k − 1, m − 1), (k − 2, m − 1), (k − 2, m), . . . , (a + 2, m),

(a + 2, m − 1), (a + 1, m − 1), (a, m− 1), . . . , (1, m− 1),

(1, m), (2, m), . . . , (a + 1, m).

The path ρ is Hamiltonian and can be visualized as in Fig. 5(a). Similarly
to as in the proof of Theorem 2, ρ can be progressively shortened to obtain
paths of all even lengths between d(u, v) and kn − 1.

13



(a)

...

...

...

...

...

...

...

...

...

...

...

...

u

v

...

(b)

...

...

...

...

...

...

u
1

2

3

4

a

a+1

a+2

k-1

k

1 3 42 m-1 mm-2m-3
1

2

3

4

k-1

k

1 3 42 m-1 mm-2m-3

...

...

...

...

...

...

v

...

a

a+1

a+2

even length even length

even
length

even
length

odd
length

odd
length

Figure 5. The different cases when d(ua, v) is even.

Sub-case (i.b) Suppose that a is odd (and so v lies on even row a + 1 ≥ 2
and on column m). Consider the path ρ from u to v defined as:

(1, 1), (2, 1), . . . , (k, 1), (k, 2), (k − 1, 2), . . . , (1, 2),

(1, 3), (2, 3), . . . , (k, 3), (k, 4), (k − 1, 4), . . . , (1, 4), . . . ,

(k, m − 3), (k − 1, m − 3), . . . , (1, m − 3), (1, m − 2), (2, m− 2),

. . . , (k, m − 2), (k, m− 1), (k, m), (k − 1, m),

(k − 1, m − 1), (k − 2, m− 1), (k − 2, m), (k − 3, m),

(k − 3, m − 1), . . . , (a + 2, m − 1), (a + 1, m − 1), (a, m− 1),

. . . , (1, m − 1), (1, m), (2, m), . . . , (a + 1, m)

(note that the vertex (a+2, m) does not appear on ρ). The path ρ is almost-
Hamiltonian and can be visualized as in Fig. 5(b). Similarly to as in the
proof of Theorem 2, ρ can be progressively shortened to obtain paths of all
odd lengths between d(u, v) and kn − 2.

Case (ii) d(ua, v) is odd.

So, by the induction hypothesis, there exists an almost-Hamiltonian path ρa

from ua to v in Qk
n(a) which can be progressively shortened to obtain paths

of all odd lengths between d(ua, v) = d(u, v) − a and kn−1 − 2, and so that
the residual vertex of the almost-Hamiltonian path ρa is adjacent to v. As
in the proof Theorem 2, the paths ρ0, ρ1, . . . , ρk−1 and the residual vertices

14



yield a k × kn−1 grid, with rows 1, 2, . . . , k and columns 1, 2, . . . , m, where
m = kn−1, with ‘wrap-around’ column edges.

Sub-case (ii.a) Suppose that a is odd (and so v lies on even row a + 1 ≥ 2
and on column m − 1). Consider the path ρ from u to v defined as:

(1, 1), (2, 1), . . . , (k, 1), (k, 2), (k − 1, 2), . . . , (1, 2),

(1, 3), (2, 3), . . . , (k, 3), (k, 4), (k − 1, 4), . . . , (1, 4),

. . . , (k, m− 3), (k, m − 2), (k − 1, m − 2), (k − 1, m − 3), . . . ,

(a + 2, m − 3), (a + 2, m − 2), (a + 1, m − 2), (a + 1, m − 3),

(a, m − 3), (a, m − 2), . . . , (4, m − 2), (4, m − 3), (3, m − 3),

(3, m − 2), (2, m− 2), (2, m− 3), (1, m− 3), (1, m− 2), (1, m− 1),

(k, m − 1), (k − 1, m − 1), . . . , (a + 2, m− 1), (a + 2, m), (a + 3, m),

. . . , (k, m), (1, m), (2, m), (2, m− 1), (3, m − 1), (3, m), (4, m),

(4, m − 1), . . . , (a, m − 1), (a, m), (a + 1, m), (a + 1, m − 1).

The path ρ is Hamiltonian and can be visualized as in Fig. 6(a). Similarly
to as in the proof of Theorem 2, ρ can be progressively shortened to obtain
paths of all even lengths between d(u, v) and kn − 1.
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Figure 6. The different cases when d(ua, v) is odd.

Sub-case (ii.b) Suppose that a is even (and so v lies on odd row a + 1 ≥ 1
and on column m − 1). Consider the path ρ from u to v defined as:

(1, 1), (2, 1), . . . , (k, 1), (k, 2), (k − 1, 2), . . . , (1, 2),
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(1, 3), (2, 3), . . . , (k, 3), (k, 4), (k − 1, 4), . . . , (1, 4),

. . . , (k, m − 3), (k − 1, m − 3), . . . , (1, m − 3), (1, m− 2),

(1, m− 1), (1, m), (2, m), (2, m− 1), (2, m− 2), (3, m− 2), (3, m− 1),

(3, m), (4, m), (4, m− 1), (4, m− 2), . . . , (a, m), (a, m − 1),

(a, m − 2), (a + 1, m − 2), (a + 2, m − 2), . . . , (k, m− 2),

(k, m − 1), (k, m), (k − 1, m), (k − 1, m − 1), (k − 2, m − 1),

. . . , (a + 2, m), (a + 2, m − 1), (a + 1, m − 1)

(note that the vertex (a+1, m) does not appear on ρ). The path ρ is almost-
Hamiltonian and can be visualized as in Fig. 6(b). Similarly to as in the
proof of Theorem 2, ρ can be progressively shortened to obtain paths of all
odd lengths between d(u, v) and kn − 2.

However, the base case is handled by Proposition 1.

The following is an immediate corollary of Theorem 4.

Corollary 5 Let k ≥ 3 and n ≥ 2, with k odd. Qk
n is edge-bipancyclic.

As remarked earlier, bipanconnectivity and bipancyclicity are concepts
which make most sense in the context of bipartite graphs, such as the graphs
Qk

n, for k even. However, when k is odd, Qk
n is not bipartite and it is possible

that odd cycles might exist, as well as odd and even length paths between
vertices u and v. As we shall see, this is indeed the case but not universally.

Henceforth, k is odd. Consider the vertices u = (0, 0, . . . , 0) and v =
(vn−1, vn−2, . . . , v0) of Qk

n, where (as usual) we assume w.l.o.g. that vi ≤
k−1
2

,
for i = 0, 1, . . . , n − 1. Consider any path from u to v that does not use any
‘wrap-around’ edge, i.e., an edge where the ith component of one incident
vertex is k−1 and where the ith component of the other incident vertex is 0,
for some i. Such a path must alternate between odd parity and even parity
vertices; thus, such paths are either all of even length or all of odd length
(depending upon whether d(u, v) is even or odd). Suppose that d(u, v) is odd
(and so all such paths are of odd length). Let i be such that vi is maximal
from amongst {vn−1, vn−2, . . . , v0}. Any path from u to v of length at most

vn−1 + . . . + vi+1 + (k − vi − 1) + vi−1 + . . . + v0 = d(u, v) + k − 2vi − 1

cannot use a wrap-around edge and so must be of odd length. Consequently,
there are no even length paths from u to v of length less than d(u, v)+k−2vi.
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Identical reasoning implies that if d(u, v) is even then there are no odd length
paths from u to v of length less than d(u, v)+k−2vi. Consequently, we have
a lower bound on the length of a shortest path, joining u and v and of parity
different from that of d(u, v).

Choose the vertex v of Qk
n to be such that vn−1 = 1 and vj = 0, for

j = 0, 1, . . . , n− 2. Thus, there exists a vertex v such that d(u, v) is odd and
there are no paths joining u and v of even length less than d(u, v) + k − 2.
There clearly also exists a vertex v′ such that d(u, v′) is even and there are no
paths joining u and v′ of odd length less than d(u, v) + k − 2. Consequently,
as we are interested in general statements concerning all pairs of distinct
vertices from Qk

n, we shall only look for even (resp. odd) length paths joining
u and v of length at least d(u, v) + k − 2, when d(u, v) is odd (resp. even).

Theorem 6 Let k ≥ 3 and n ≥ 2, with k odd, and let u and v be distinct
vertices of Qk

n. There are paths joining u and v of all lengths in {i : d(u, v)+
k − 3 ≤ i ≤ kn − 1}. Furthermore, this result is optimal in that there exist
distinct vertices u and v of Qk

n for which d(u, v) is odd (resp. even) and
there are no even-length (resp. odd-length) paths joining u and v of length
less than d(u, v) + k − 2.

Proof The proof is very similar in structure to that of Theorem 4 and
we adopt the exact same notation as in that proof (and in the proof of
Theorem 2). There are two cases, according to whether d(ua, v) is odd or
even. Given the earlier proofs, we are much briefer with our arguments here.

Case (i) d(ua, v) is even.

By Theorem 4, there exists a Hamiltonian path ρa from ua to v in Qk
n(a) which

can be progressively shortened to obtain paths of all even lengths between
d(ua, v) = d(u, v)−a and kn−1−1, inclusive. As in the proofs of Theorems 2
and 4, the paths ρ0, ρ1, . . . , ρk−1 yield a k × kn−1 grid, with rows 1, 2, . . . , k
and columns 1, 2, . . . , m, where m = kn−1, with ‘wrap-around’ column edges.

Sub-case (i.a) Suppose that a is even (and so v lies on odd row a+1 ≥ 1 and
on column m). Build the path ρ as depicted in Fig. 7(a). It is easy to see
that ρ has length kn − 2 and can be progressively shortened to obtain paths
of all odd lengths between (k − 1) + d(ua, v) + a + 1 = d(u, v) + k and kn − 2
(shorten so that the resulting sub-path of length kn−1 − 1 lies on row k).
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Figure 7. The different cases when d(ua, v) is even.

Sub-case (i.b) Suppose that a is odd (and so v lies on even row a+1 ≥ 2 and
on column m). Build the path ρ as depicted in Fig. 7(b). It is easy to see
that ρ has length kn − 1 and can be progressively shortened to obtain paths
of all even lengths between (k−1)+d(ua, v)+a+1 = d(u, v)+k and kn −1.

Case (ii) d(ua, v) is odd.

By Theorem 4, there exists an almost-Hamiltonian path ρa from ua to v in
Qk

n(a) which can be progressively shortened to obtain paths of all odd lengths
between d(ua, v) = d(u, v)−a and kn−1−2, inclusive, and so that the residual
vertex is adjacent to v. As before, the paths ρ0, ρ1, . . . , ρk−1 and the residual
vertices yield a k × kn−1 grid, with rows 1, 2, . . . , k and columns 1, 2, . . . , m,
where m = kn−1, with ‘wrap-around’ column edges.

Sub-case (ii.a) Suppose that a is odd (and so v lies on even row a + 1 ≥ 2
and on column m − 1). Build the path ρ as depicted in Fig. 8(a). It is easy
to see that ρ has length kn − 2 and can be progressively shortened to obtain
paths of all odd lengths between (k − 1) + d(ua, v) + a + 1 = d(u, v) + k and
kn − 2.

Sub-case (ii.b) Suppose that a is even (and so v lies on odd row a + 1 ≥ 1
and on column m − 1). Build the path ρ as depicted in Fig. 8(b). It is easy
to see that ρ has length kn − 1 and can be progressively shortened to obtain
paths of all even lengths between (k− 1) + d(ua, v) + a + 1 = d(u, v)+ k and
kn − 1.
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Figure 8. The different cases when d(ua, v) is odd.

In order to complete the construction of our paths, we deal with some
special cases. W.l.o.g., assume that vn−1 6= 0. There is trivially a path of
length

(k − vn−1) + vn−2 + . . . + v0 = d(u, v) + k − 2vn−1 ≤ d(u, v) + k − 2

joining u and v. We can easily lengthen this path to obtain a path of length
d(u, v) + k − 2 joining any distinct vertices u and v. Hence, no matter
which vertex v is, Theorem 4 yields paths as in the statement of the result.
Optimality follows by the argument presented prior to the statement of the
result.

Note that putting k = 3 in Theorem 6 yields the result from [15] that
Q3

n is edge-pancyclic, and also resolves the question for arbitrary k, as was
posed in [15]. The following corollary is immediate, given the fact that the

diameter of Qk
n, when k is odd, is n(k−1)

2
.

Corollary 7 Let k ≥ 3 and n ≥ 2, with k odd. The k-ary n-cube Qk
n is

m-panconnected, for m = n(k−1)+2k−6
2

, and (k − 1)-pancyclic.

As remarked earlier, the bounds in Corollary 7 are optimal.
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6 An application

We give here the outline of an application where we require our paths to be
progressively shortened and where alternative shortening methods will not
suffice.

Consider a parallel machine whose underlying interconnection network
is a k-ary n-cube, and where this machine is required to solve problems
specifically designed for a cycle of processors (amongst other problems), with
the number of processors involved in the cycle being variable. Moreover, there
is known to be a faulty processor in the machine and this faulty processor
cannot be used in any embedded cycle. Furthermore, the location of the fault
is not known and any cycle must be constructed in a distributed fashion,
through message-passing between processors.

For simplicity, suppose that k is even and n = 2; consequently, any
cycle we construct must have even length. We begin our construction by
processor (0, 0) attempting to construct a Hamiltonian path to processor
(0, 1) according to the construction in Proposition 1. Actually, the path is
constructed as in Case 1.3 of Theorem 1 of [27]. It is important to note that
the constructions in Proposition 1 (and Theorems 1 and 3 of [27]) are of
such a uniform nature that the processor at the head of the path constructed
so far can calculate in constant time the name of the next processor on the
path, and can send a message to this processor thus extending the path
constructed so far. If there were no faults then this construction would
terminate with a Hamiltonian path from (0, 0) to (0, 1) laid out in the k-
ary 2-cube. However, the construction will halt when the faulty processor is
encountered (we assume that the processor immediately before the fault on
the constructed path can detect that the next processor is faulty).

Let p be the processor that detects that the faulty processor is the next
processor on the path, and suppose that this faulty processor is f = (i, j).
The processor p sends a message to processor s = (i + 1, j) (over at most 4
hops, with addition modulo k) that it should use the construction of Proposi-
tion 1 to embark on the construction of a path of length k2−2 to the processor
(i, j − 1). Note that the path, as shown in Fig. 2(b) (that is, the amended
construction of a case from [27]), avoids the faulty processor f . We reiterate
that the uniform nature of the construction is such that the processor at the
head of the path constructed so far can calculate in constant time the name
of the next processor on the path, and can send a message to this processor
thus extending the path constructed so far. Having reached the processor
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(i, j − 1), we actually truncate the path at processor t = (i +1, j − 1). Thus,
we have a path of length k2 − 3 from processor s to t, avoiding processor
(i, j − 1) and the faulty processor f . Moreover, this path can be progres-
sively shortened so as to obtain any odd length path (of length at most k2−3)
joining s to t (and avoiding f). Furthermore, again because of the uniformity
of the construction and also the uniformity of the progressive shortening, this
progressive shortening can easily be completed by message-passing between
the processors. In fact, message-passing can be used so that every processor
q on the path computes a list of triples of the form (q+, q−, i) detailing that
q appears on a path of length i from s to t so that that the processor q−

(resp. q+) is the next processor on this path moving towards s (resp. t).
The existence of the edge (s, t) gives our embedded fault-avoiding cycles of
varying lengths.

The above construction can be generalized to an analogous construction
of fault-avoiding paths and cycles in Qk

n where there is a faulty processor. As
we stated above, we have not presented the precise details of this generaliza-
tion; what suffices is that the general principle has been presented and any
interested reader could implement the construction if needs be. We envisage
that there are many other applications of progressive shortening but we have
chosen not to explore these applications here.

7 Conclusions

In tandem with [15, 27], we have resolved completely the main questions con-
cerning panconnectivity, bipanconnectivity, pancyclicity and bipancyclicity
for a k-ary n-cube Qk

n, when k ≥ 3 and n ≥ 2. In doing so, we have intro-
duced the new concept of the progressive shortening of a path and shown
how this concept can be used to solve a problem related to the embedding of
linear arrays and cycles of processors in a distributed-memory multiproces-
sor whose interconnection network is a k-ary n-cube and where there is one
faulty processor.

As directions for future research, we would like to see more applications
of progressive shortening (and feel that the concept will prove to be more
widely applicable). Also, we would like to see results on panconnectivity,
pancyclicity, and so forth, extended to k-ary n-cubes in which there may be
(a limited number of) faulty vertices or edges.
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