Scale-Up of Flow-Assisted Synthesis of C_2-Symmetric Chiral PyBox Ligands

Claudio Battilocchio, Marcus Baumann, Ian R. Baxendale, Mariangela Biava, Matthew O. Kitching, Steven V. Ley, Rainer E. Martin, Stephan A. Ohnmacht, Nicholas D. C. Tappin

a Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
E-mail: theitc@ch.cam.ac.uk
b F. Hoffmann-La Roche Ltd., Pharmaceuticals Division, Chemistry Technology and Innovation, 4070 Basel, Switzerland
c Department of Pharmaceutical Chemistry and Technology, Sapienza University of Rome, Rome, Italy
Received 19 November 2011; revised 13 December 2011

Abstract: A series of PyBox ligands were prepared from commercially available chelidonic acid by a multistep flow sequence using mesoreactor technology. A chloro group introduced onto the ligand scaffold was subsequently exploited to give amine derivatives ready for immobilization through microencapsulation technologies.

Key words: ligands, macrocycles, flow chemistry, solid-supported reagent, asymmetric synthesis, scale up

Improvements in the understanding and design of asymmetric syntheses have led to the discovery of a versatile class of chiral C_2-symmetric chelators that are commonly referred to as PyBox ligands. In combination with metals such as scandium, copper, or ruthenium, these chiral ligands have been used in various transformations, including asymmetric cycloadditions, aldol reactions, hydrocyanation, cyclopropanation, and ene-type reactions. As the application of such species is always associated with loss or incomplete recovery of the precious ligand, chemists have been attracted to immobilization strategies to mitigate this inefficiency. For instance, Cornejo demonstrated the immobilization of PyBox ligands onto Merrifield resin, as well as the preparation of monolithic constructs, both used in flow cyclopropanations. In addition, Tilliet has reported asymmetric silacyanations, epoxide ring openings, and imine alknylations using PyBox ligands immobilized via a Huisgen cycloaddition reaction to establish the tether. Recently, PyBox systems have also been immobilized on triiron tetraoxide (Fe_3O_4) nanoparticles to create magnetically recoverable catalysts for use in the addition of terminal alkynes to imines. As a general class, PyBox ligands show excellent utility and continue to generate significant interest; however, their scalable synthesis and immobilization is not always straightforward due to the highly reactive intermediates that are involved in their preparation.

As part of our ongoing interest in developing and applying new encapsulated catalyst systems, we decided to study the immobilization of PyBox ligands within a polyurea matrix with the ultimate aim of evaluating the capability of the resulting catalysts in continuous asymmetric flow synthesis. For this purpose, we wished to achieve the rapid preparation of multi-gram quantities of various 4-aminopyBox ligands 4, ready for encapsulation. The strategy

Scheme 1 Strategy for the synthesis and immobilization of Py-Box ligands
for this preparation is outlined in Scheme 1 and involves the elaboration of commercial chelidonic acid (1; 4-oxo-4H-pyran-2,6-dicarboxylic acid) into the desired 4-chloro-PyBox system 3 in several steps; the presence of the chloro group permits the subsequent introduction of an amine functionality through incorporation and reduction of an azide group. The resulting 4-amino-PyBox ligands could subsequently be encapsulated by intercepting the wall-forming sequence during an intrafacial polymerization of a polyfunctional isocyanate residue.

Our route to the PyBox ligands is similar to previously reported procedures, but we decided to establish a flow sequence, as it was noted that upon scale-up the reported yields varied dramatically and the potential hazards associated with scaling increased significantly. Furthermore, in addition to gaining benefits through higher reproducibility due to constant heat and mass transfer provided by the micro-mixing in flow, we also expected to obtain increased processing efficiencies through automation and to achieve improved safety profiles in the handling of toxic or hazardous reagents, as reported in several recent publications.

Our starting point was commercially available chelidonic acid (1), which we transformed into the analogous chelidamic acid (2; 4-oxo-1,4-dihydropyridine-2,6-dicarboxylic acid) by treatment with 25% aqueous ammonia under sonication conditions. A 1 M solution of the chelidonic acid in aqueous ammonia was pumped at 0.5 mL/min through a 135-mL coil of fluorinated ethylene propylene copolymer (FEP), with an internal diameter of 3 mm, to give a residence time of 4.5 hours. The reactor was submerged in an ultrasonically agitated water bath held at 45 °C, and the system was maintained under a positive pressure by a 75-psi back-pressure regulator at the outlet to the first reactor coil. The yellow–orange solution that left the first reactor coil was combined with a second flow stream consisting of 3.5 M aqueous hydrochloric acid. A tube-displaced T-piece connector (see Scheme 2) was used to add the acid solution (2 mL/min) to the flow stream of the ammonia solution, resulting in neutralization and immediate formation of a fine white precipitate. The use of a standard T-union led to blockages as a result of solid buildup at the joints as a result of back-mixing; this was completely avoided by the use of the modified displacement T-connector. To maintain a free-flowing slurry, a second sonicator (isothermal water temperature 15 °C) was used to break up any aggregate that formed, simply by submerging the connecting T-unit and a short length of the downstream tubing (3.5 m × 3 mm id.) in the water well of the sonicator. A further length of the tube reactor (1.5 m) was used to direct the output onto a sintered filter that was maintained under vacuum suction to permit isolation of the product. The resulting white solid was dried under vacuum at 40 °C to give chelidamic acid (2) as its pure monohydrate in 81% isolated yield. The identity of the product was confirmed by 1H NMR spectroscopy and by elemental analysis, and the compound was used in the next step without any further purification.

In the next step of the sequence, the acid 2 was polychlorinated to give the diacyl dichloride core building block 6 (Scheme 3). The reported batch conditions for this pro-
Procedure involve refluxing the substrate in excess thionyl chloride for several hours. This is an efficient reaction when conducted on a small scale, but on scaling up results in problems of reaction containment and workup (CAUTION: extremely exothermic/delayed runaway, with the liberation of large quantities of hydrogen chloride and sulfur dioxide). Consequently, we performed this crucial chlorination step as a flow process, preferably by using stoichiometric amounts of various chlorinating reagents to minimize workup. Our initial attempts using oxalyl chloride in acetonitrile resulted in incomplete formation of the chlorinated product 6. Quenching the output stream with excess methanol to aid characterization led to the isolation of a mixture of the 4-hydroxy and the 4-chloro dimethyl esters 6a and 6b, respectively, as the corresponding monohydrochloride salts, together with the symmetrical 4-chloro anhydride 6c (Scheme 3). Changing the residence time and temperature of the process failed to alter the ratio of products significantly, whereas increasing the stoichiometry of the oxalyl chloride led to more of the desired product 6b, but also raised new problems with regard to quenching and isolation. We therefore evaluated the use of thionyl chloride, but the results of this process mirrored those achieved with oxalyl chloride, requiring the use of an excess of the reagent to achieve good conversions into 6b. It is well documented in the literature that the addition of catalytic quantities of N,N-dimethylformamide can improve yields from chlorination reactions involving oxalyl chloride or thionyl chloride. Although this indeed proved to be the case, it also led us to consider the use of the Vilsmeier’s intermediate (7) as an alternative reagent for the reaction.

We found that commercially available Vilsmeier reagent (7) dissolved in acetonitrile was capable of converting the hydroxy diacid 2 into the trichloride 6 in excellent yields in a Vapourtec R2+/R4 flow system. A 0.2 M solution of substrate 2 (1 equiv) and triethylamine (2 equiv) in acetonitrile and a 0.45 M solution of Vilsmeier reagent (5.625 equiv) in a 9:1 mixture of acetonitrile and N,N-dimethylformamide were separately loaded into individual sample loops mounted on the R2+ unit. The solutions were combined at a T-piece connector and the resulting mixture was passed through a convection flow coil (CFC) heated at 75 °C. We found that a residence time of 57 minutes was suitable for full chlorination of chelidamic acid (2) and we isolated product 6b in quantitative conversion after quenching the reaction with methanol. In practice, the corresponding acid chloride 6 could be isolated by collecting the output from the reactor in a stirred solution of anhydrous diethyl ether to precipitate the triethylammonium salts, which could then be filtered off. This procedure allowed the isolation of the pure trichlorinated product 6 with acceptable recovery simply by evaporation of the solvent (Scheme 4).

Alternatively, the output stream could be combined directly with a quench stream of methanol with incubation in a second 10-mL flow coil (20 minutes residence time), followed by evaporation of the solvents (NOTE: The use of a hydrochloric acid trap when evaporating the solvent is recommended), thereby permitting the isolation of 6b as its hydrochloride salt in quantitative yield. The free base from 6b could also be isolated by directing the combined methanolic stream through a cartridge of a dimethylamino-functionalized resin (Quadrapure-DMA; 4

Scheme 3 Chlorination of chelidamic acid (2) in flow
equivalents) before evaporation of the solvent, although this process resulted in a slightly lower recovery (91%).

Our previous experience showed that batch procedures for the preparation of amido alcohols $8a$–e (Scheme 5) – the next step in the sequence (the amide-forming step) – are troublesome because of the formation of a number of impurities as a result of the presence of local excesses of reagents during the coupling process. These impurities were identified by liquid chromatography/mass spectrometry as dimerized or partially dimerized material that were difficult to separate by column chromatography because their R_f values were similar to those of the desired products.

However, because macrocycles of the type $10a$–f (Figure 1) represent an interesting new class of structures with considerable potential for selective chelation of small molecules or ions, we set ourselves the challenge of deliberately preparing these structures. We felt that this would not be easily accomplished in a selective and efficient manner by batch-processing techniques for the reasons discussed above. However, because flow microreactors permit better control over mixing of substrate streams, we were confident that such reactors could be used to perform the transformation efficiently. Indeed, when we adjusted the pump delivery speeds to produce a 1:1 stoichiometry of reagent streams (each 0.1 M in acetonitrile) with a 60-minute residence time in a CFC reactor maintained at 80 °C, we obtained the macrocyclic structures shown in Figure 1 in high yields and high purities.

By performing the amide formation from the diacyl dichloride 6 in a flow process and by using a 1:2 stoichiometric ratio of 6 and amino alcohol 9, we succeeded in the clean formation of the desired bisamides $8a$–e through precise mixing of the starting materials in an exact and constant ratio (Scheme 5). We also found that the same amide products could be produced by mixing the corresponding amino alcohols $9a$–e with diester $6b$ (free base form, previously prepared in flow) in a 2:1 ratio, and melting the components together for 3.5 h at 120 °C. Trituration of the resulting light-brown gum with a 10:1 mixture of diethyl ether and methanol gave the desired amides as...
a white solid in >85% isolated yield. The resulting material was of sufficient purity (>90%) for use in the subsequent stages of the synthesis.

Next, we turned our attention to the cyclodehydration of the chiral bis-amides 8a–d (R and S enantiomeric series) by using a previously described diethylaminosulfur trifluoride (DAST)-promoted flow procedure (Scheme 6).22 The use of this reagent in flow provided rapid and clean access to the bisoxazolines 3a–c without the need for manual handling of large quantities of the hazardous DAST reagent, as would be required in a batch process. Additionally, we were able to benefit from the use of an in-line calcium carbonate quench to remove the liberated hydrogen fluoride and to trap any inorganic fluoride contaminants,23 thereby allowing the isolation of clean 4-chloro-PyBox ligands merely by removing the solvent. This procedure proved highly successful in providing the oxazolines 3a–c in high yields and in permitting ready scale-up to gram quantities with excellent reproducibility (approximately 1–3 g per aliquot injection). Unfortunately, the synthesis of the indane derivative 8d proved problematic as a result of insufficient solubility, which prevented us from progressing through the sequence. The desired bisoxazoline product tended to precipitate from solution upon meeting the calcium carbonate quenching column, making recovery difficult. After considering the safety aspects of excluding the in-line fluoride scavenge, we decided not to progress further with this particular substrate.

In the final stage of the sequence, a 0.1 M solution of the oxazoline starting material 3 in N,N-dimethylformamide was combined in a standard T-mixing piece with a 5.0 M aqueous solution of sodium azide. The resulting mixture was then directed through a CFC reactor at 120 °C (residence time 70 min) to effect an SNAr reaction on the 4-chloro substituent (Scheme 7). The desired azide derivatives 11a–c were generated in excellent yields24 and were subsequently reduced to the corresponding amines by using an H-Cube flow hydrogenator.25 Although this reduction can be performed under standard batch conditions, we found that the use of the H-Cube in combination with catalyst cartridges filled with 10% palladium/carbon was

Scheme 5 Preparation of chlorobisamides 8a–d

Scheme 6 Synthesis of 4-chloro-PyBox ligands in flow
advantageous, as the controlled mode (30 bar, 50 °C, 0.01 M in MeOH) allowed a complete and clean conversion into the desired amines within minutes as opposed to the hours required by the batch method. The desired 4-amino PyBox ligands 4a–c were isolated in analytical purity by crystallization from diethyl ether. The structure and chirality of (S)-4b was confirmed by high-resolution single-crystal X-ray analysis (Figure 2). The structures of the other compounds were inferred by analogy.

This three-step sequence consisting of DAST-mediated cyclodehydration, high-temperature azide substitution, and hydrogenation shows the advantages of flow techniques over batch processing in a number of powerful yet cumbersome reaction steps (Schemes 5 and 6). Furthermore, all the above steps proved to be readily scalable, successfully generating sufficient quantities (10-gram amounts) of the final materials, which we are currently encapsulating for application in asymmetric flow transformations.

In summary, we have devised a scalable flow route to a number of functionalized PyBox ligands. Improvements to previous syntheses have been achieved through the use of flow techniques that resulted in better reproducibility, greater automation, and improved safety standards; moreover, the flow techniques permit in-line purification, making the demonstrated route both rapid and highly efficient.

Unless stated otherwise, reagents were obtained from commercial sources and used without purification. Laboratory reagent grade EtOAc, PE 40–60, and CH₂Cl₂ were obtained from Fischer Scientific and distilled before use. Laboratory reagent-grade toluene was obtained from Fischer Scientific, azeotropically distilled to remove H₂O, and then distilled from CaH₂ before use. Solvent were removed under reduced pressure by using a standard rotary evaporator (Genevac EZ-2 Plus personal evaporator or Vapourtec V-10 evaporator). All column chromatography was carried out by using silica gel (0.040–0.063 mm), purchased from Breckland Scientific Supplies. TLC analyses were performed on Merck 60 F254 silica gel plates, visualized by short- and long-wave UV radiation in combination with standard laboratory stains (acidic potassium permanganate or acidic ammonium molybdate). Preparative TLC was conducted on PLC 20 × 20 × 1 cm plates impregnated with silica gel 60 F254, purchased from Merck. Melting points were measured on a Stanford Research Systems MPA100 (OptiMelt) automated melting point system.

IR spectra were recorded neat on a PerkinElmer Spectrum One FT-IR spectrometer with Universal ATR sampling accessories. Letters in parentheses refer to the relative absorbance of the peak: w = weak (≤40% of the most intense peak); m = medium (41–69% of the most intense peak); s = strong (70% of the most intense peak).

1H NMR spectra were recorded on Bruker Avance DPX-400, Bruker Avance DRX-600, Avance 400 QNP Cryo, or Avance 500 Cryo spectrometers with the residual solvent peak as the internal reference (CDCl₃ = 7.26 ppm, DMSO-d₆ = 2.50 ppm, CD₂OD = 3.31). 1H resonances are reported to the nearest 0.01 ppm. 13C NMR Spectra were recorded on the same spectrometers with the central reso-
nance of the solvent peak as the internal reference (CDCl₃ = 77.16 ppm, DMSO-d₆ = 39.52 ppm, CD,OD = 49.00). All ¹³C resonances are reported to the nearest 0.1 ppm. DEPT 135, COSY, HMQC, and HMBC experiments were used to aid structural determination and spectral assignment. Where specified, NOESY and gradient NOE spectra were used to aid the assignment of ¹H spectra. Coupling constants (J) are quoted in Hz and reported to the nearest 0.1 Hz. Where appropriate, averages of the signals from peaks displaying multiplicity were used to calculate the values of the coupling constants.

High-resolution mass spectra were recorded on a Waters Micro-mass LCT Premier spectrometer in the time-of-flight mode with a positive ESI; some were recorded by Mr. Paul Skelton on a Bruker BioApex 47e FTICR spectrometer operating in the positive ESI or EI mode at 70 eV to within a tolerance of 5 ppm of the theoretically calculated value.

LC-MS analyses were performed on an Agilent HP 1100 series chromatography [Mercury 3u C18 (2) column] attached to a Waters ZQ2000 mass spectrometer 102 with an ESI ionization source operating in the ESI mode. Elution was carried out at a flow rate of 0.6 mL/min using a reverse-phase gradient of MeCN and H₂O containing 0.1% formic acid. The gradient used is shown in Table 1. The retention time (tᵣ) is given in minutes to the nearest 0.1 minute, and the m/z value is reported to the nearest mass unit (m.u.).

Table 1 Solvent Gradient for HPLC Purification

<table>
<thead>
<tr>
<th>Time (min)</th>
<th>MeCN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>5</td>
</tr>
<tr>
<td>4.0</td>
<td>95</td>
</tr>
<tr>
<td>5.0</td>
<td>95</td>
</tr>
<tr>
<td>7.0</td>
<td>5</td>
</tr>
<tr>
<td>8.0</td>
<td>5</td>
</tr>
</tbody>
</table>

Optical rotations were measured by using a PerkinElmer Model 343 polarimeter equipped with a sodium lamp (λ = 589 nm, d-line); [α]D25 values are reported in 10⁻¹ deg cm² g⁻¹. CIF numbers are reported as part of compound characterization. Elemental analyses within a tolerance of ±0.5% of the theoretical values were performed by Mr. Alan Dickerson and Mrs. Patricia Irele in the microanalytical laboratories at the Department of Chemistry, of the University of Cambridge.

4-Hydroxypyridine-2,6-dicarboxylic Acid (2)²⁶

A 1 M soln of chelidonic acid (1) in 25%aq NaOH was pumped at 0.5 mL/min through a 135-mm, 3 mm i.d., 4.5-h residence time. The entire tubular reactor was submerged in an ultrasonic water bath (isothermal regulation 45 °C) and the system was maintained under positive pressure by using a 75-psi back-pressure regulator at the outlet of the reactor coil. The yellow/orange soln that exited the initial reactor coil was combined with a second flow reactor (Scheme 2) used to mix the acid soln (2 mL/min) with the flow stream (3.5 mm x 3 mm i.d.) of the ammonia soln, resulting in neutralization and immediate formation of a fine white precipitate. The mixture was maintained as a free-flowing slurry by using a second sonicator (isothermal water regulation 15 °C). An additional 1.5-m length of the tube reactor directed the output onto a sintered filter that was maintained under vacuum suction to permit isolation of the product. The resulting white solid was dried under vacuum at 40 °C to give chelidonic acid (2) monohydrate as a white solid; yield: 41.02 g (81%); molecular formula C₂₉H₂₅NO₅.

IR (neat): 3441 (w), 3364 (m), 3122 (w), 2993 (w), 2857 (w), 1642 (s), 1562 (s), 1470 (s), 1393 (s), 1337 (s), 1259 (s), 1123 (s), 986 (s), 935 (s), 916 (s), 895 (s), 782 (s), 761 (s), 704 (s), 697 (s) cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 7.53 (s, 2 H, Py-CH), δ = 167.0 (C), 165.7 (C), 149.6 (C), 115.2 (CH).

HRMS (ESI): m/z calcd for [C₁₇H₁₅NO₅]⁺: 304.0976; found: 304.0966.

PyBox Cyclization; General Procedure

A 0.24 M soln of Et₂NSF₃ (DAST) in CH₂Cl₂ was loaded into a 10-mL sample loop, and a 0.1 M soln of the appropriate bisamide in 1:1 MeCN–CH₂Cl₂ was separately loaded into a second 10-mL sample loop. The solns were injected into the system and combined at a standard T-piece mixer before flowing through a 10-mL CFC (0.5 mL/min, 1:1 ratio, residence time: 20 min, system solvent: CH₂Cl₂) maintained at 90 °C. The outflow was directed through a glass column loaded sequentially with a layer of CaCO₃ and a layer of silica gel (2 g each). The soln was collected for 2 h and then the solvent was removed in vacuo to yield the corresponding cyclized material 3.

4-Chloro-2,6-bis-(4-isopropyl-1,3-oxazol-2-yl)pyridine ([S]-3a)²⁷

Yield: 298 mg (89%); colorless oil; [α]D25 +96.9 (c 1.1, CHCl₃).

IR (neat): 3441 (w), 3364 (m), 3122 (w), 2993 (w), 2857 (w), 1642 (s), 1562 (s), 1470 (s), 1393 (s), 1337 (s), 1259 (s), 1123 (s), 986 (s), 935 (s), 916 (s), 895 (s), 782 (s), 761 (s), 704 (s), 697 (s) cm⁻¹.

¹H NMR (600 MHz, CDCl₃): δ = 7.53 (s, 2 H, Py-CH), δ = 167.0 (C), 165.7 (C), 149.6 (C), 115.2 (CH).

HRMS (ESI): m/z calcd for [C₁₇H₁₅NO₅]⁺: 304.0976; found: 304.0966.
13C NMR (100 MHz, CDCl3): δ = 161.45 (C), 148.12 (C), 145.39 (C), 125.87 (CH), 72.98 (CH), 71.29 (CH2), 32.86 (CH), 19.01 (CH3), 18.36 (CH3).

LC-MS: \(t_g = 4.58 \) min, \(m/z = 336.1 \) [M + H]*.

HRMS (ESI): \(m/z \) calcd for \(C_{16}H_{22}ClN_3O_2: 336.1479 \); found: 336.1487.

2.6-Bis[(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2-yl]-4-chloropyridine ([(S)-3]b)

Yield: 327 mg (90%); off-white solid; mp 177–179 °C; \([\alpha]_D^{25} = 25.8 \) (c 1.0, CHCl3).

IR (neat): 3334 (br w), 2932 (br w), 1700 (m), 1673 (s), 1544 (m), 1406 (m), 1380 (m), 1314 (m), 1235 (w), 1189 (w), 1148 (m), 1063 (m), 1029 (m), 914 (m), 755 (m), 700 (s) cm⁻¹.

1H NMR (400 MHz, CDCl3): δ = 8.30 (s, 2 H), 4.52 (d, \(J = 10.2 \) and 9.0 Hz, 2 H), 4.37 (m, 2 H), 4.15 (dd, \(J = 10.2 \) and 9.0 Hz, 2 H), 1.01 (br s, 18 H).

1C NMR (100 MHz, CDCl3): δ = 162.2 (C), 148.3 (C), 145.6 (C), 126.5 (CH), 75.7 (CH), 70.2 (CH), 34.6 (C), 26.4 (CH3).

LC-MS: \(t_g = 4.87 \) min, \(m/z = 364.2 \) [M + H]*.

HRMS (ESI): \(m/z \) calcd for \(C_{16}H_{22}ClN_3O_2Na: 386.1611 \); found: 386.1628.

4-Chloro-2,6-bis[(4S)-4-phenyl-4,5-dihydro-1,3-oxazol-2-yl]pyridine ([(S)-3]c)

Yield: 353 mg (88%); off-white solid; mp 160–163 °C; \([\alpha]_D^{25} = 15.6 \) (c 1.0, CHCl3).

IR (neat): 3133 (br w), 2930 (br w), 2161 (w), 1671 (s), 1639 (s), 1561 (m), 1518 (s), 1454 (m), 1406 (m), 1380 (m), 1314 (m), 1235 (w), 1189 (w), 1148 (m), 1063 (m), 1029 (m), 914 (m), 755 (m), 700 (s) cm⁻¹.

1H NMR (400 MHz, CDCl3): δ = 8.35 (s, 2 H), 7.39–7.31 (m, 10 H), 5.46 (dd, \(J = 8.8 \) and 10 Hz, 2 H), 4.93 (dd, \(J = 8.4 \) and 10.0 Hz, 2 H), 4.44 (dd, \(J = 8.4 \) and 8.8 Hz, 2 H).

1H NMR (600 MHz, CDCl3): δ = 8.34 (s, 2 H), 7.36 (t, \(J = 7.8 \) Hz, 4 H), 7.28–7.35 (m, 6 H), 5.46 (app t, \(J = 9.6 \) Hz, 2 H), 4.93 (app t, \(J = 9.0 \) Hz, 2 H).

1C NMR (150 MHz, CDCl3): δ = 161.2 (C), 148.0 (C), 145.6 (C), 141.3 (C), 128.9 (CH), 127.9 (CH), 126.8 (CH), 126.4 (CH), 75.7 (CH3), 70.3 (CH3).

LC-MS: \(t_g = 4.74 \) min, \(m/z = 404.2 \) [M + H]*.

HRMS (ESI): \(m/z \) calcd for \(C_{17}H_{24}N_4O_2: 317.1978 \); found: 317.1973.

13C NMR (100 MHz, CDCl3): \(\delta = 162.79 \) (C), 153.68 (C), 147.51 (C), 111.06 (CH), 72.75 (CH), 70.90 (CH2), 32.89 (CH), 19.11 (CH3), 18.37 (CH3).

LC-MS: \(t_R = 3.63 \) min, \(m/z = 317.2 \) [M + H]+.

HRMS (ESI): \(m/z \) calcld for \([C_7H_7Cl_3NO_2]^+\): 230.11; found: 230.11.

Dimethyl 4-Chloropyridine-2,6-dicarboxylate (6)26: Batch Synthesis

[CAS Reg. No. 20443–03–2]

White solid.

IR (neat): 3082 (w), 1759 (s), 1614 (w), 1584 (s), 1556 (m), 1431 (w), 1416 (w), 1371 (w), 1259 (s), 1190 (m), 1144 (m), 1123 (m), 1101 (m), 1044.5 (w), 1022 (w), 990 (m), 947 (s), 907 (s), 806 (m), 726 (s); \(\delta = 8.9 \) Hz, 2 H), 4.22 (app. t, \(J = 8.9 \) Hz, 2 H), 0.88 (s, 18 H).

Dimethyl 4-Chloropyridine-2,6-dicarboxylate (6)26: Flow Synthesis

A first stock soln was prepared containing Vilsmeier’s reagent (CI\(\text{CH}=N+\text{Me}_2\text{Cl}–\)) (4.5 mmol) in a mixture of MeCN (9 mL) and DMF (1 mL), and a second stock soln was prepared containing chelidamic acid (2: 2 mmol) and Et3N (4 mmol) in MeCN (25 mL). These solns were pumped at flow rates of 100\,\mu\text{L}\,/\text{min} and 250\,\mu\text{L}\,/\text{min}, respectively, to meet at a T-piece. The combined flow stream was then directed through two 10-mL CFCs linked in series and heated at 75 °C (residence time ~57 min), followed by a cartridge containing Quadrapure Dimethylamine resin (QP-DMA; 6 g). The output stream was collected for 2.5 h and the solvent was evaporated; yield: 431 mg (91%); white solid; molecular formula: \(\text{C}_7\text{H}_7\text{Cl}_3\text{NO}_2 \).

Alternatively, the QP-DMA column was omitted and the output stream was collected in a stirred EtOH (100 mL) to precipitate the triethylammonium salts. After evaporation of the solvent, the product was isolated in 76% yield.

IR (neat): 3082 (w), 1759 (s), 1556 (m), 1431 (w), 1416 (w), 1371 (w), 1259 (s), 1190 (m), 1144 (m), 1123 (m), 1101 (m), 1044.5 (w), 1022 (w), 990 (m), 947 (s), 907 (s), 806 (m), 726 (s); \(\delta = 8.9 \) Hz, 2 H).
Bisamides 8: General Procedure

A soln of the appropriate amino alcohol (7.5 mmol) and Et$_3$N (7.5 mmol, 1 equiv) in anhyd MeCN (50 mL) and a soln of dicarbonyl dichloride S (3.75 mmol, 0.5 equiv) in anhyd MeCN (50 mL) were delivered separately, each at a flow rate of 250 μL/min, to a standard T-piece connector. The combined soln was then passed into a 10-

mL CFC heated at 75 °C (20 min residence time). The exiting soln was subjected to scavenging by elution through a glass column packed with polystyrene-bound guanidine base (PS-TBD; 15 mmol), and collected for 2.5 h. The solvate was finally removed in vacuo to give the required product.

4-Chloro-N,N'-bis(1R)-1-(hydroxymethyl)-2-methylpropyl)pyridine-2,6-dicarboxamide ([R]-Ba)

Yield: 1035 mg (74%); cream solid; mp 127–130 °C; [a]$_D$ +41.9 (c 1.00, CHCl$_3$).

IR (neat): 3085 (m), 2954 (m), 1720 (s), 1574 (m), 1467 (w), 1448 (w), 1377 (m), 1373 (m), 1294 (w), 1240 (w), 1142 (w), 1092 (w), 1065 (s), 1015 (s), 970 (m), 891 (m), 779 (w), 698 (s), 727 (cm)$^{-1}$.

1H NMR (600 MHz, CDCl$_3$): δ = 8.28 (s, 2 H, Py-H), 3.88–3.93 (m, 2 H, 2 \times Me). 3.76 (m, 4 H), 2.04 (sext, J = 6.8 Hz, 2 H), 1.04 (d, J = 6.8 Hz, 6 H), 0.98 (d, J = 6.8 Hz, 6 H).

1H NMR (600 MHz, CD$_2$OD): δ = 8.28 (s, 2 H, Py-H), 3.88–3.93 (m, 2 H), 3.76 (m, 4 H), 2.04 (sext, J = 6.8 Hz, 2 H), 1.04 (d, J = 6.8 Hz, 6 H), 0.98 (d, J = 6.8 Hz, 6 H).

1C NMR (100 MHz, CD$_2$OD): δ = 163.9 (C), 151.3 (C), 147.5 (C), 125.1 (CH), 62.1 (CH$_3$), 58.1 (CH), 29.3 (CH), 19.2 (CH$_3$), 18.5 (CH$_3$).

4-Chloro-N,N'-bis(1S)-1-(hydroxymethyl)-2-methylpropyl)pyridine-2,6-dicarboxamide ([S]-8a)20

CAS Reg. No. 477779–36–5

Yield: 1141 mg (82%); white solid; mp 130–134 °C; [a]$_D$ 25 +47.4 (c 1.23, MeOH); [a]$_D$ 25 −38.3 (c 0.97, CHCl$_3$).

IR (neat): 3500–3150 (br m); 2964 (m), 1683 (m), 1582 (w), 1536.5 (s), 1478 (m), 1391 (m), 1337 (m), 1240 (m), 1132 (w), 1065 (s), 1016 (s), 971 (m), 892 (m), 850 (w), 814 (w), 779 (w), 748 (s), 727 (cm)$^{-1}$.

1H NMR (400 MHz, CD$_2$OD): δ = 8.28 (s, 2 H, Py-H), 3.88–3.93 (m, 2 H), 3.76 (m, 4 H), 2.04 (sext, J = 6.8 Hz, 2 H), 1.04 (d, J = 6.8 Hz, 6 H), 0.98 (d, J = 6.8 Hz, 6 H).

1H NMR (400 MHz, CD$_2$OD): δ = 8.32 (d, J = 8.4 Hz, 2 H, 2 × NH), 8.19 (2 s, H, Py-H), 4.66 (br s, 2 H, 2 × OH), 3.75–3.87 (m, 4 H), 3.74 (dd, J = 11.0 and 2.9 Hz, 2 H), 2.02 (sext, J = 6.7 Hz, 2 H), 0.96 (d, J = 6.7 Hz, 6 H, 2 × MeCO).

13C NMR (100 MHz, CD$_2$OD): δ = 163.9 (C), 151.3 (C), 147.5 (C), 125.1 (CH), 62.1 (CH$_3$), 58.1 (CH), 29.3 (CH), 19.2 (CH$_3$), 18.5 (CH$_3$).

13C NMR (100 MHz, CD$_2$OD): δ = 163.1 (C), 150.4 (C), 147.6 (C), 125.2 (CH), 62.9 (CH$_3$), 57.5 (CH), 29.1 (CH), 19.6 (CH$_3$), 18.9 (CH$_3$).

Analysis. Caled for C$_7$H$_7$ClN$_3$O$_4$: C, 54.91; H, 7.05; Cl, 9.73; N, 11.30. Found: C, 54.29; H, 6.98; Cl, 9.80; N, 10.95.

4-Chloro-N,N'-bis(1S)-1-(hydroxymethyl)-2,2-dimethylpropyl)pyridine-2,6-dicarboxamide ([S]-8b)20

Yield: 1392 mg (93%); white solid; mp 121.5–123.0 °C; [a]$_D$ 25 −32.5 (c 0.85, CHCl$_3$).

Synthesis 2012, 44, 635–647

© Thieme Stuttgart · New York
IR (neat): 3378 (w), 3289 (w), 3088 (m), 2966 (m), 1670 (m), 1530 (s), 1483 (m), 1478 (m), 1360 (m), 1284 (s), 1229 (s), 1123 (s), 954 (m), 883 (m), 788 (m), 690 (m) cm⁻¹.

1H NMR (400 MHz, CDCl₃): δ = 8.31 (s, 2 H), 8.04 (d, J = 10.0 Hz, 2 H), 4.00 (m, 4 H), 3.78 (dd, J = 10.0 and 8.2 Hz, 2 H), 1.06 (s, 18 H).

13C NMR (100 MHz, CDCl₃): δ = 163.2 (C), 150.3 (C), 148.5 (C), 125.7 (CH₂), 63.2 (CH), 34.2 (C), 27.2 (CH₃). LC-MS: tᵣ = 4.45 min, m/z = 400.3 [M + H⁺].

HRMS (ESI): m/z calcd for C₁₀H₈N₃O₄Cl: 400.0203; found: 400.0206.

4-Chloro-N,N-bis(1S)-2-hydroxy-1-phenylethyl)pyridine-2,6-dicarboxamide [(S)-8c]

Yield: 1613 mg (98%); white solid; mp >248 °C (dec.).

IR (neat): 3296 (w), 3065 (w), 2936 (w), 2965 (s), 1454 (m), 1407 (m), 1308 (m), 1238 (w), 1070 (m), 1030 (s), 898 (m), 847 (m), 729 (s), 698 (s) cm⁻¹.

1H NMR (600 MHz, DMSO-d₆): δ = 10.8 (s, 2 H), 8.27 (s, 2 H), 8.28 (s, 2 H, NH), 8.18 (s, 2 H), 7.55 (d, J = 7.8 Hz, 2 H, 2 × NH), 7.19 (m, 8 H, Ar), 5.42 (t, J = 1.8 Hz, 2 H), 5.24 (d, J = 3.6 Hz, 2 H, OH), 4.52 (d, J = 3.6 Hz, 2 H, 311 (dd, J = 16.2 and 3.6 Hz, 2 H), 2.82 (d, J = 16.2 Hz, 2 H).

13C NMR (150 MHz, DMSO-d₆): δ = 162.7 (C), 151.3 (C), 146.7 (C), 141.0 (C), 128.0 (CH), 126.9 (CH), 125.4 (CH), 125.1 (CH), 124.7 (CH), 72.3 (CH), 57.7 (CH), 40.4 (CH₃).

LC-MS: tᵣ = 4.56 min, m/z = 486.2 [M + Na⁺]; 461.99 [M – H⁻].

1H NMR (600 MHz, CDCl₃): rotamers of the amide cause degeneracy of the signals for the amide, pyridine, and chiral protons; R = 5.29, CH₃, 6-cis and 6-trans.

IR (neat): 3600–3150 (br w), 1655 (s), 1524 (m), 896 (m), 847 (m), 743 (m) cm⁻¹.

1H NMR (600 MHz, CDCl₃): δ = 8.15 (2 H, s), 7.15 (app. t, 2 H), 4.78 (br s, 2 H), 3.53 (m, 4 H), 3.36 (m, 4 H).

13C NMR (150 MHz, CDCl₃): δ = 162.6 (C), 156.5 (C), 151.1 (C), 126.6 (CH), 60.3 (CH₃), 59.7 (CH₃).

LC-MS: tᵣ = 3.55 min, m/z = 268.19 [M – H⁻].

Macrocycles 10a–d: General Procedure

A solution of the appropriate amino alcohol (5 mmol) and Et₃N (10 mmol, 2 equiv) in anhyd MeCN (50 mL) and a solution of dicarbonyl dichloride 6 (2.5 mmol) in anhyd MeCN (50 mL) were separately delivered, each at a flow rate of 250 μL/min, to a standard T-piece connector. The combined fluidic flow was then passed into three 10-mL interlinked CFCFs heated to 80 °C (60 min residence time). A 75-psi back-pressure regulator at the exit of the reactor maintained the system pressure. The exiting solution was concentrated and suspended in Et₂O/ac (50 mL), which was extracted with sat. aq NaHCO₃ (2 × 30 mL). The organic layer was dried (MgSO₄) and concentrated in vacuo to yield the desired product.

(5S,15S)-10,21-Dichloro-5,15-disopropyl-3,17-dioxo-6,14,23,24-tetraazatricyclo[17.3.1.1⁷,23,2⁴]tetracosa-1(23),8(24),9,11,19,21-hexaene-2,7,13,18-tetraone (10a)

Yield: 1206 mg (90%); white solid; mp >254 °C (dec.).

IR (neat): 3664 (w), 3450 (brw), 2969 (s), 1732 (m), 1676 (s), 1528 (s), 1465 (w), 1383 (m), 1231 (s), 1235 (m), 1163 (w), 1066 (s), 1056 (s), 989 (w), 763 (w) cm⁻¹.

1H NMR (600 MHz, CDCl₃): δ = 8.43 (s, 2 H), 8.38 (s, 2 H), 8.26 (d, J = 16.2 Hz, 2 H), 5.36 (dd, J = 1.2 and 11.4 Hz, 2 H, 4.30 (app. t, 2 H), 4.16 (dd, J = 1.8 and 11.4 Hz, 2 H), 1.94–1.89 (m, 2 H), 1.05 (d, J = 6.6 Hz, 6 H), 0.96 (d, J = 6.6 Hz, 6 H).

13C NMR (150 MHz, CDCl₃): δ = 163.7 (C), 162.2 (C), 150.4 (C), 149.1 (C), 147.8 (C), 146.8 (C), 128.8 (CH), 126.1 (CH), 126.7 (CH), 54.4 (CH), 29.7 (CH), 19.8 (CH₃), 19.7 (CH₃).

LC-MS: tᵣ = 5.29, m/z = 536.98 [M + H⁺].
HRMS (ESI): m/z calculated for C_{26}H_{16}Cl_{2}N_{4}O_{6}: 651.0382; found: 651.0381; calculated for C_{26}H_{16}Cl_{2}N_{4}O_{6}: 629.0995; found: 629.1000.

10,21-Dichloro-3,17-dioxa-6,14,23,24-tetraazastricyclo[17.3.1.142]tetracosa-1(23),8(24),9,11,19,21-hexaene-2,7,13,18-tetrone (10c)
Yield: 927 mg (82%); white solid; mp >190 °C (dec.).
IR (neat): 3380 (br w), 2964 (w), 1715 (m), 1669 (s), 1520 (s), 1234 (s), 1155 (m), 890 (w), 780 (m) cm⁻¹.

HRMS (ESI): m/z calculated for C_{18}H_{15}Cl_{2}N_{4}O_{6}: 453.0369; found: 453.0381; calculated for C_{18}H_{15}Cl_{2}N_{4}O_{6}: 475.0183; found: 453.0165.

Crystallographic data for compounds (S)-4a, (S)-4b, 6b, 4-chloro-6-(methoxycarbonyl)pyridine-2-carboxylic acid, and 10a have been deposited with the accession numbers CCDC 850877, 849198, 850875, 850878, and 850876, respectively, and can be obtained free of charge from the Cambridge Crystallographic Data Centre.

Acknowledgment
The authors would like to thank the following for their financial support: the Ralph Raphael studentship award and the Cambridge European Trust (M.B.); the Royal Society (I.R.B.); the EPSRC support: the Ralph Raphael studentship award and the Cambridge University studentship award (M.O.K.); F. Hoffmann-La Roche, Basel (R.E.M. and S.A.O.); and the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.

References

PAPER
C. Battilocchio et al.

HRMS (ESI): m/z calculated for C_{26}H_{16}Cl_{2}N_{4}O_{6}: 651.0382; found: 651.0814; calculated for C_{26}H_{16}Cl_{2}N_{4}O_{6}: 629.0995; found: 629.1000.

10,21-Dichloro-3,17-dioxa-6,14,23,24-tetraazastricyclo[17.3.1.142]tetracosa-1(23),8(24),9,11,19,21-hexaene-2,7,13,18-tetrone (10c)
Yield: 927 mg (82%); white solid; mp >190 °C (dec.).
IR (neat): 3380 (br w), 2964 (w), 1715 (m), 1669 (s), 1520 (s), 1234 (s), 1155 (m), 890 (w), 780 (m) cm⁻¹.

HRMS (ESI): m/z calculated for C_{18}H_{15}Cl_{2}N_{4}O_{6}: 453.0369; found: 453.0381; calculated for C_{18}H_{15}Cl_{2}N_{4}O_{6}: 475.0183; found: 453.0165.

Crystallographic data for compounds (S)-4a, (S)-4b, 6b, 4-chloro-6-(methoxycarbonyl)pyridine-2-carboxylic acid, and 10a have been deposited with the accession numbers CCDC 850877, 849198, 850875, 850878, and 850876, respectively, and can be obtained free of charge from the Cambridge Crystallographic Data Centre.

Acknowledgment
The authors would like to thank the following for their financial support: the Ralph Raphael studentship award and the Cambridge European Trust (M.B.); the Royal Society (I.R.B.); the EPSRC support: the Ralph Raphael studentship award and the Cambridge University studentship award (M.O.K.); F. Hoffmann-La Roche, Basel (R.E.M. and S.A.O.); and the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk; Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.

References

(17) The use of a standard T or Y union gave rise to problems of back-mixing and build-up of blockages in the flow channel.

(18) The Vapourtec R2+R4 flow system used in this study is commercially available from Vapourtec; Web site: http://www.vapourtec.co.uk.

(19) Quadrapure-DMA. Available from Johnson Matthey, see: http://www.scavengingtechnologies.com/site.asp?id = 1297&pageid = 1299.

(22) Baumann, M.; Baxendale, I. R.; Ley, S. V. Synlett 2008, 2111.

