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Abstract

Even the simplest known living organisms are complex chemical pro-
cessing systems. But how sophisticated is the behaviour that arises from
this? We present a framework in which even bacteria can be identified
as capable of representing information in arbitrary signal molecules, to
facilitate altering their behaviour to optimise their food supplies, for ex-
ample. Known as Abstraction/Representation theory (AR theory), this
framework makes precise the relationship between physical systems and
abstract concepts. Originally developed to answer the question of when a
physical system is computing, AR theory naturally extends to the realm
of biological systems to bring clarity to questions of computation at the
cellular level.

1 Introduction

The language of information processing is widespread in biology. From DNA
replication to nerve impulses to brain activity, systems are frequently talked of
as storing and processing data, and even as performing intrinsic computation.
It has previously been difficult, however, to argue that this is more than an
analogy: is there, in fact, computation happening in biological systems? Is
it possible to model such systems as computations? Is it even the case that
the ability to compute is so basic to living organisms that we can use it as a
definition of life?

Biological and computational processes share many similarities, such as: the
encoding of process data in proteins; signal transduction from input to processed
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output [4]; cells mimicking computers [22]; similarities between computer net-
works and biological distributed systems and viruses [18].

Computational biology aims to use these similarities to model biological
systems computationally, with the dual aims of better understanding their basic
processes, and of producing biological systems artificially. Computer simulations
of biological systems have inspired key areas in machine intelligence [26, ch.8].
Organisms such as bacteria [23], slime moulds [1], and hybrid biological/silicon
devices [8] have been closely studied as potential non-standard computational
devices.

Here we make precise this previously informal relationship between biological
and computational processes. We locate computing within the broader category
of representational activity, and give conditions for when a biological system is
making fundamental use of representation to perform a range of tasks including
engineering, communication and signalling, and computing. We use the formal
framework of the recently developed Abstraction/Representation Theory (AR
theory), introduced in [12] and extended in [13]. AR theory was introduced
to give a rigorous characterisation of the relationship between abstract repre-
sentation and physical system, primarily in the context of determining when a
physical system is being used as a computer. It was developed with non-standard
human-designed computational devices in mind, and has already been put to
good use determining whether representational activity, including computation,
is occurring in unconventional computing substrates [11, 14].

AR theory’s ability to deal with representation as a whole, and computing
outside standard silicon-based digital models, gives it the capacity to extend
further to considerations of the computing/representational activities of organic
systems. There are, however, challenges to using AR theory with respect to
biological systems that do not occur when considering devices that have been
deliberately engineered.

At the centre of AR theory is the representation relation, mediating be-
tween physical and abstract objects. This permits the encoding and decoding
of abstract information in physical systems, as is necessary for communica-
tion and computing. Physical states are represented abstractly, and in certain
tightly-defined situations this representation relation from physical to abstract
can effectively be ‘reversed’ (by engineering the system) to an instantiation re-
lation from abstract to physical. By this means abstract information can be
instantiated in a physical system.

In the human-user context, the representation relation is both determined
by and located in easily-identifiable intelligent and conscious representational
entities, namely the human users taking part in scientific, technological, or
computational activities. A representational entity is required for any represen-
tational activity to take place, and is required to be a physical entity that is
part of the representational system. This distinguishes, in AR theory, a system
being used as part of representational activity, and one that is ‘going about its
own business’. This also allows for the distinction between a system being used
as a computer, and one that is post hoc represented as computing: in the first
case the representational entity is part of the system under consideration, and
in the second it is not [12].

In natural biological systems, the challenge in identifying representational
activity is both to identify the representational entity present, and to determine
that representation is occurring within the system in the absence of a conscious
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or intelligent user who can inform us of this fact. The type of representational
activity (engineering, communication, computing) is then a further property of
the system to be determined.

Here we investigate representational activity (including signalling and com-
puting) in low-level biological systems. We give methods for determining the
presence of representational activity in the absence of high-level representational
entities, and pose the question: how simple can a representational entity be? We
find evidence for representation in systems far removed from conscious entities,
and show that representation does not require structures as complex as a brain
or collections of neurons. We see that key to determining representational activ-
ity (as opposed to ‘manipulation of stuff’) is the identification of arbitrariness
within representation. That is, that the instantiation of information occurs in a
one-to-many mapping between abstract and physical, so that the same outcome
could have occurred using a different physical material or process. From the
point of view of the biological process, it is the abstract process that is key in
determining the correct physical outcome, not its particular instantiation.

We analyse three specific biological examples using AR theory to illus-
trate the presence and type of representational activity. By a close considera-
tion of three biological processes—bacterial chemotaxis, the genetic code, and
photosynthesis—we show how the arbitrariness of information representation
allows us to determine whether these systems are engaged in representational
activity or not—yes for the first and second, no for the third—and we iden-
tify specific examples of computing happening in biological systems. We find
that low-level biological systems use representation as an integral part of their
behaviour and their interaction with their environment, and use this ability in
certain situations to store and manipulate information in an equivalent process
to that used by human-designed computers. Abstraction and representation
can now seen to be fundamental processes engaged in by most, maybe all, living
organisms.

2 The framework

AR theory was introduced in [12] and extended and formalised in [13]. These
works should be consulted for the full physical, philosophical, and formal back-
ground to the framework. It is a framework in which science, engineering/technology,
computing, and communication/signalling are all defined as representational ac-
tivity requiring the fundamental use of the representation relation in order to
define their operation.

AR theory was developed to answer the specific questions of when a physical
system is computing [12]. This turns out to be a question about the relationship
between an abstract object (a computation) and a physical object (a computer).
What is needed is a formal language of relations, not from mathematical objects
to mathematical objects (as is usual in mathematics and theoretical computer
science), but between physical objects and those in the abstract domain. The
core of AR theory is the representation relation, mapping from physical objects
to abstract objects. Experimental science, engineering, and computing all re-
quire the interplay of abstract and physical objects via representation in such a
way that formal descriptive diagrams commute: the same result can be gained
through either physical or abstract evolutions. The key result of [12] defined
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Figure 1: Basic representation. (a) Spaces of abstract and physical objects (here,
a switch with two settings and a binary digit). (b) The directed representation
relation R mediating between the spaces.

computing as the use of a physical system to predict the outcome of an abstract
evolution.

2.1 Formalising representation

AR theory identifies objects in the domain of physical systems, abstract objects
(including mathematical and logical entities), and the representation relation
which mediates between the two. The distinction between the two spaces, ab-
stract and physical, is fundamental in the theory, as is their connection only by
the (directed) representation relation. An intuitive example is given in figure 1:
a physical switch is represented by an abstract bit, where in this case it is zero
for up, one for down.

An example of an object in the domain of physical entities is a computer. It
has, usually, internal degrees of freedom, and a physical evolution that connects
initial input and final output states. An example of an abstract object is a
computation, which is a set of objects and relations as described in the logical
formalisms of theoretical computer science. Likewise, an object such as a bac-
terium is a physical entity, and its theoretical representation within biology is
an object in the domain of abstract entities. In what follows, we use bold font
to indicate where an object p or evolution H is physical; and italic font for ab-
stract objects represented within equations, for example, in giving the abstract
object mp.

The elementary representation relation is the directed map from physical
to abstract objects, R : P → M , where P is the set of physical objects, and
M is the set of abstract objects. When two objects are connected by R we
write them as R : p → mp. The abstract object mp is then said to be the
abstract representation of the physical object p, and together they form one of
the basic composites of AR theory, the representational triple 〈p,R,mp〉. The
basic representational triple is shown in figure 2(a).

Similarly, abstract evolution takes abstract objects to abstract objects, which
we write as C : M → M . An individual example is shown in figure 2(b), for
the mapping C(mp) taking mp → m′p. The corresponding physical evolution
map is given by H : P→ P. For individual elements in figure 2(c) this is H(p)
which takes p→ p′.

In order to reach the next key concept in AR theory, we now apply the
representation relation to the outcome state of the physical evolution to give
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Figure 2: Parallel evolution of abstract evolution (e.g. an algorithm) and poten-
tial physical computing device. (a) The basic representational triple, 〈p,R,mp〉:
physical system p is represented abstractly by mp using the modelling repre-
sentation relation RT of theory T . (b) Abstract dynamics CT (mp) give the
evolved abstract state m′p. (c) Physical dynamics H(p) give the final physical
state p′. (d) RT is used again to represent p′ as the abstract output mp′ ,
|mp −mp′ | = ε. (Adapted from [12].)

its abstract representation mp′ , figure 2(d). We now have two abstract objects,
m′p and mp′ . For some (problem-dependent) error quantity ε and norm |.|, if
|mp′ − m′p| ≤ ε then the diagram 2(d) commutes. Commuting diagrams are
fundamental to the use of AR theory. If a set of abstract and physical objects
form a commuting diagram under representation, then mp is a faithful abstract
representation of physical system p for the evolutions C(mp) and H(p).

The main reason why commuting diagrams are important, along with faith-
ful abstract representations for physical systems, is that the final state of a
physical object undergoing evolution can be known either by tracking the phys-
ical evolution and then representing the output abstractly, or by theoretically
evolving the representation of the system. In the first case, the ‘lower path’
of a commuting diagram is followed; in the latter, the ‘upper path’. Finding
out which diagrams commute is the business of basic experimental science; and
once commuting diagrams have been established they can be exploited through
engineering and technology.

2.2 Theory and experiment

In experimental science, a test for commutation of a diagram involves producing
a controlled physical setup (the experiment) that has both an abstract repre-
sentation R and an abstract prediction of how it will behave, C. The physical
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Figure 3: Engineering the system p, using the instantiation relation R̃T .

system p is evolved under the physical experimental dynamics H, and the out-
come compared to the theoretical prediction. If they coincide within the error
tolerance of the experiment and the desired outcome confidence, then the dia-
gram commutes.

This is not, of course, the purpose of an experiment. Experiments are de-
signed in order to test not a single scenario but a theory of a physical system. A
physical theory, T , is a set of representation relations RT for physical objects,
a domain of such objects for which it is purported to be valid, and a set of
abstract predictive dynamics for the output of the representations, mp, C(mp).
If a theory supports commuting diagrams for all scenarios in which it has been
both defined and tested, then it is a valid theory. A physical system or device
that is both well tested and well understood will in general have a large number
of commuting diagrams supporting it.

2.3 Engineering

The representation relation defined so far is directed, from physical to abstract
objects. This is modelling : giving an abstract representation of a physical ob-
ject. The question can now be posed: is it possible to give a reversed repre-
sentation relation, an instantiation relation? This will not be a basic relation
in the same way as the ordinary (modelling) representation relation is basic:
abstract representation can be given for any physical object (this is language),
but there are plenty of abstract objects that do not have a physical instanti-
ation (‘unicorn’, ‘free lunch’, etc). Only in very specific circumstances can an

instantiation relation R̃T be given for a theory T .
To find these circumstances, consider again the ‘upper’ and ‘lower’ paths

of a commuting diagram, (p0 → mp0 → m′p0
) and (p0 → p → [mp = m′p0

])
respectively. Between them, these paths describe the process of finding some p0

such that when it is subjected to the physical process H : p0 → p it becomes
the physical system p whose abstract representation is mp. In other words, if
both paths are present and form a commuting diagram, the theory T can be
used to engineer system p from system p0 given a desired abstract specification
mp: this is the instantiation relation R̃T , figure 3.

A use of the instantiation relation can be seen as a counterfactual use of the
representation relation: which physical system, when represented abstractly,
would give the abstract representation that we are trying to instantiate? The
method by which it is achieved will vary considerably given different scenarios:
trial and error, abstract reasoning, numerical simulation, etc. What connects
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Figure 4: Physical computing in which an abstract problemA is encoded into the
model mp of the computer p, then instantiated into p; the computer calculates
via H(p), evolving into p′ from which the representation relation is used to
obtain the model mp′ ' m′p from which the output of the computation A′ can
be decoded.

these methods is that they are not straightforward: it is generally a skilful and
cumulative process to reverse a representation relation.

2.4 Computation

A commuting diagram in the context of computation connects the physical com-
puting device, p, and its abstract representation mp. It makes integral use of
the instantiation relation: a computer is an engineered device. mp can be a
number of different abstract representations; a common one draws from the set
of binary strings. The abstract evolution is then the (binary) program to be
run on the computer, and the physical evolution is how the state of the com-
puter changes during the program (change of voltages etc). The full commuting
diagram describes the parallel evolution of physical computer and abstract al-
gorithm, connected via the representation given by the theory of the computing
device, RT .

The AR description of physical computing is not simply the parallel evolution
of physical and abstract. The compute cycle starts from a set of abstract objects:
the program and initial state that are to be computed. The most important use
of a computing system is when the abstract outcome m′p is unknown: when
computers are used to solve problems. Consider as an example the use of a
computer to perform the binary arithmetical problem 01 + 10. If the outcome
were unknown, and the computing device being used to compute it, the final
abstract state, m′p = (11), would not be evolved abstractly. Instead, confidence
in the technological capabilities of the computer would enable the user to reach
the final, abstract, output state mp′ = m′p using the physical evolution of the
computing device alone.

This use of a physical computer is the compute cycle, figure 4: the use of
a physical system (the computer) to predict the outcome of a computation (an
abstract evolution).
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2.5 Encoding and representation

An important element in the AR analysis of computing is the integral use of
encoding and decoding in the compute cycle. These bear a close resemblance
to the representation and instantiation relations, and we will see that in cer-
tain circumstances that they can be composed. However, unlike representation,
encoding and decoding maps live entirely above the abstract/physical dividing
line, and take abstract objects to abstract objects.

Encoding as the first step in the compute cycle embeds the computation
to be performed into the abstract specification of the physical computer. This
stage, frequently overlooked when analysing computation, is necessary in order
to translate between the language of the problem specification (for human users,
frequently linguistic) and that of the input interface of the device. Similarly,
the decoding step is fundamentally necessary in order to translate the answer
from the abstract representation of the end-state of the physical computer.

Encoding and decoding are, in general, fully composable: multiple encod-
ings can be used within a system, and we can always consider a combination of
encodings to be itself a single encoding (likewise for decodings). In other words,
given a series of encodings γi, we can define the result of applying all of them in
turn to be a single encoding, γ = γ1 ◦ γ2 ◦ . . .. Encodings can also be composed
with representation: encoding the abstract representation of a physical system
is equivalent to representing it in a different manner, RT ◦ γ = R′T . A single
representation can also generally be decomposed in this way into another rep-
resentation (often a simpler one) and an encoding. Encodings can in this way
often be dispensed with notationally by rolling them in to the definition of a
representation; care must be taken, however, to ensure that important elements
of diagrams are not thereby obscured, because encoding and decoding can come
with significant computational overheads. The converse is not possible: repre-
sentation cannot fully be replaced with encoding or decoding. At some stage in
between the physical system and the abstract problem, a representation relation
must be used to cross the line between abstract and physical.

2.6 Signalling

Science, engineering, and computing all build on each other within AR theory:
faithful abstract scientific representations and good device theories are needed
for engineering, and the instantiation relation and commuting engineering cy-
cles are required in order to have a functioning computer. There is another
important category of representational activity that sits alongside computing at
the top of this stack: communication or, alternatively, signalling.

Signalling entails the encoding of a signal into a carrier, and then its decod-
ing back to the original signal, within some ε error tolerance, Figure 5. This
demonstrates how it can be considered as a specific type of computation, where
the abstract evolution to be ‘predicted’ is the identity operation (that is, the
abstract output is equal to the abstract input); hence the diagram ends at the
same abstract output, the signal S ≈ S′, as it begins. The physical carrier
starts in state p and ends in state p′; these states are typically separated either
spatially or temporally. Furthermore, a given signal may be carried by several
different physical substrates in the course of a single communication (for exam-
ple, electrons in copper, and photons in fibre); what is important is that the
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Figure 5: A signal S instantiated into a physical carrier p.

correct abstract signal can be decoded at the end.
Signalling can therefore be viewed as a simpler form of representational ac-

tivity than full computing, but requiring the same key elements of AR theory.
Engineering is necessary to allow instantiation of an abstract signal in the car-
rier, and so good theories of the signalling device (and commuting ‘science’
diagrams) are required. These good theories may be discovered through the
process of science, in the case of human-engineered signalling, or through evo-
lution, in the case of intrinsic computation (see §3).

The blurred lines between communication and computation are familiar
within Computer Science (where communication tasks between ‘Alice’ and ‘Bob’
can be used to perform some even quite complex computations. With AR the-
ory, it becomes clearer that this boundary is similarly blurred when considering
when biological system are performing signalling operations (a relatively com-
mon consideration for biologists) and when they are computing (a rather less
universally accepted situation within such systems).

2.7 Arbitrariness of encoding

The consideration of signalling brings out a key aspect of computing and com-
munication that is foregrounded by AR theory. An abstract object, such as a
computation or a signal, is encoded into a physical system: a physical computer
or signal carrier. An important aspect of this implementation is that there is not
a necessary one:one mapping between abstract and physical objects. A given
signal may be carried by many different physical systems, a situation familiar
to human language users (a word can be written, transmitted through speech,
or through physical sign language, to name just a few possibilities). This also
occurs frequently in the biological domain. For example some plants coevolve
a communication language with other organisms; a particularly sophisticated
case of this is where plants use chemical carriers to implement a signal to their
predators’ predators [25]; different plants use different chemicals.

The converse can also be true: a single physical system can be represented
by multiple different abstract representations. These abstractions may be re-
lated in a particular manner that occurs frequently in Computer Science, where
an abstract computation or communication is encoded into a physical comput-
ing/signalling device. There can be a number of models at different levels of
abstraction, each representing the same physical computer/signal carrier, con-
nected through a refinement relation [7, 10]. That is, the same abstract com-

9



putational object has several more concrete encodings, each progressively more
‘refined’ or ‘reified’. These are all abstract as opposed to physical, but some
of them, the more concrete ones, are somehow deemed ‘closer’ to the physical
system. That is, the eventual instantiation relation, that maps down from these
abstract states to a physical implementation, is somehow ‘simpler’ or ‘more
natural’ for these concrete representations.

In refinement theory, an abstract object can be refined in many different
ways. For example, an abstract set may be refined to a (still abstract, but
more concrete) list, array, linked list, or other data structure. A data word may
be encoded in a string of bytes in big-endian or little-endian order in memory
(most significant byte first, or last). Another example is how an alphabetical
character may be encoded as a string of eight bits in ascii or ebcdic formats.
When larger character sets that require more than eight bits for encoding are
considered, many more possibilities exist.

It is refinement theory that allows us to connect the two seemingly different
situations within computing/signalling of a single abstract object encoded in
multiple physical implementations, and a single physical implementation sup-
porting multiple abstract representations. It is simplest to consider these within
a signalling scenario, figure 6.

Figure 6(a) shows a refinement stack: a single physical carrier p has abstract
representation mp, which is a refinement through the function γ2 of the abstract
object n, which in turn is an encoding of the signal S through the function γ1
(and similarly for the decoding stage). This is a single carrier being represented
by different abstract models, both of which represent the same ‘refined’ sig-
nal S. Note that it may require considerable computation to implement these
steps, including calculation and compilation (for encoding), and rendering (for
decoding).

In comparison, figure 6(b) has the same signal, S, encoded in two different
abstract models n (here given a subscript to form nq), via refinement γ3, and
mp, via the refinement γ4. Each of these in turn is instantiated in a separate
physical carrier, p and q. This is a single signal being transmitted by two
different carriers. They are equivalent if γ3 ≡ γ1 and there is a composition
of the refinements such that γ4 ≡ γ1 ◦ γ2. It is worth noting that there are
situations where this equivalence does not follow, most notably when considering
the heterotic systems analysed in [13].

Figure 6(b) is also equivalent within AR theory to figure 6(c), where there is
only representation between the signal and the abstract layer. As noted in §2.5,
encodings and representation relations can always be combined to form a new
representation. The converse is not, however, always necessarily possible. Some
systems may make use of primitive representation: the signal is encoded directly
into the physical system, rather than via some abstract representation of the
physical system. The notion of primitive representation will become important
when we consider intrinsic representation in systems.

What all these different situations demonstrate is that there is an arbitrari-
ness to the encoding of signals (and by equivalent, if more complex, diagrams,
of computing) in physical carriers. There is a strong sense in which arbitrari-
ness, of both signal representations and carriers, is a hallmark of these forms of
representational activity happening within physical systems. The multi-valued
nature of abstract vs physical is well-known within Computer Science (where,
for instance, the same computation may be performed on both a standard lap-
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Figure 6: Multi-valued representation and instantiation of a signal S: (a) one
signal carrier with two different abstract representations connected by a re-
finement; (b) two different refinements of the same signal instantiated in two
different physical carriers (the different colours indicate the distinct signalling
cycles); (c) figure 6b redrawn as two representation relations connecting the
signal carriers.

top and a computer constructed from beer cans and string); we see below that
it also forms the key to determining the presence of computing, signalling, and
other representational activity in biological systems.

3 Intrinsic representation

We have seen how AR theory locates computing in a physical system within
the broader category of representational activity ; including science, technol-
ogy/engineering, and signalling. We now turn to the question of when, and
indeed if, a biological system can demonstrate such activity, how it can be
recognised, and what considerations are needed to extend the framework that
was developed in the context of human-centric representational activities to sys-
tems without such organisms present. This requires us to extend the range of
key concepts within the framework. In this section we give the theoretical ex-
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tensions and insights necessary for the identification of representational activity
in biological systems, giving the framework within which discussion of specific
examples then takes place in section §4.

3.1 Representational entities

The first consideration when analysing computing in biological systems is the
ability of the system to be performing any representational activity at all. In AR
theory, the ability to represent depends on there being a representational entity.
Originally termed a ‘computational entity’ in [12], this is an entity capable
of establishing a representation relation, and capable of encoding and decoding
abstract information in physical systems. It physically locates the representation
relation, and is the entity that performs abstraction, and uses the output of
representational activity (including computation). If there is representational
activity then there is always something that is performing it.

When considering standard computing, the representational entity is almost
always a human being: the computer designer, or programmer, or user, given the
representational cycle being determined. It locates and generates RT , bridging
the gap between abstract and physical. We now introduce some new terminology
that is necessary for discussing computing outside this scenario. If a physical
object p participates in a representational cycle (science, technology, computing,
signalling) with a representation RT given by representational entity e (bold
font as the representational entity must be physical), then we say that the system
comprising {p, e,RT } forms a closed representational system. If the cycle is a
compute cycle, then the set forms a closed computational system (and similarly
for signalling etc.). If the computational system {p,RT } does not include the
physical representational entity e, we say that it is open under representation.

In standard computing scenarios, the computer (eg a laptop) does not form
a closed representational system: the representational entity is separate from
the computing device, and not even necessarily co-located with it. This is
an example of designed computing. Biological systems can compute/signal in
exactly this way when they are used by a human (or otherwise) entity to perform
a computation. Examples include DNA computing [2] and the use of slime
molds to compute shortest paths [1]. In these cases, p is the biological system,
e the human experimenter/programmer, and RT the representation they have
predetermined. This is another example of designed computing, fitting entirely
within the field of non-standard or unconventional computing devices, and whose
analysis will exactly mirror those given for eg. chemical and quantum computers
[12].

The core of the present investigation, however, is whether, and if so how, a
biological system can be said to be computing intrinsically. Is there a meaningful
way within AR theory to describe a biological process in the absence of any
human computer users or experimenters as computing, or indeed performing
any other representational activity? AR theory gives us a straightforward way
to phrase this question. We require a closed computational system to be present
in order for computing to be occurring, {p, e,RT }. In designed computing, p
and e are separate physical objects; for example, a biological system is being
used as a computer. If, however, the biological system itself is closed under
representation then the system is performing intrinsic computation. In such
a case, the physical system p (for example ‘a leaf’ or ‘a bacterium’) includes
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within it the representational entity, and the system {p, e ⊆ p,RT } forms a
closed computational system. The first step in identifying intrinsic computing
is then to determine whether a biological system under consideration is acting
as its own representational entity.

It is important to note immediately that AR theory itself gives no require-
ments as to the level of complexity that a representational entity must have;
only that it is a physical and not an abstract object. Importantly, there is no
requirement that representation activity needs to take place in the presence of
conscious, sentient, or intelligent agents. This is crucial if we are to investigate
the presence of computing (or other representational activity) in low-level bio-
logical systems. The presence of representational entities, and of representation
itself, is the key element in AR theory’s ability to give a meaningful answer to
the question of when a biological system is computing. Without an understand-
ing of the crucial role of representation, answers given previously have been of
only two types, neither particularly interesting: either that computation is an
activity purely of conscious beings, and therefore any resemblance to biologi-
cal processes is entirely misleading, or else that everything is computing at all
times, not only human beings and bacteria, but rocks and subatomic particles.
By focussing on the presence or otherwise of representation and representational
entities, AR theory enables us to make important and meaningful distinctions
between when a system is computing (or otherwise representing) and when it is
merely ‘going about its business’.

Non-intelligent representational entities do, however, pose a particular prob-
lem that rarely arises in human-computer interactions. When the representa-
tional activity is being performed by humans (engineering, technology, comput-
ing etc), the representational entity is generally both obvious and articulate. It
is therefore usually straightforward to see that representation is happening (for
example, a computer user can say that they are using a computer to perform a
certain calculation), and to determine the representation relation (for example,
the computer user tells us how they are encoding data on their laptop). In
the absence of the ability to interrogate the representational entity, however,
some other method is needed to determine whether representation is occurring
within the processes under consideration and, if so, in what way it is being put
to use. This requires careful analysis to avoid the most obvious pitfall: it is
always possible for an external observer (eg. us) to impose a post hoc abstract
representation on the physical system that is not itself part of how the system
is operating. We must avoid smuggling ourselves in as representational entities
‘through the back door’; this results in a situation where everything, including
rocks, compute. Computation then becomes a word without meaningful con-
tent. Instead, we must look at the representation happening within the system
itself: do we as scientists and external observers represent that system itself
as participating in representational activity intrinsic to itself, forming its own
representational entity; and, if so, what is being represented?

3.2 Signatures of representation

The key to determining the presence of intrinsic representational activity is the
understanding that when a system is ‘going about its business’ as normal, its
dynamics are given by the physical system itself. The physical system p is the
important element. If, however, it is including representation, then at some
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point the important element will be an abstract object mp. When considering
intrinsic computation or signalling, abstract representation will always be an
intermediary process: it always results in physical behavioural changes. What
is seen from the outside is always some physical process: all data and information
are embodied. In the absence of entities (such as conscious humans) that can use
an abstract result (as in the human use of computers), the use of representation
in biological systems will be to produce physical output. For example (see
§4.1), consider the system comprising a bacterium in a chemical gradient. The
output of interest might be the observed part of this system that describes the
bacterium’s movement: swimming versus tumbling. As another example (see
§4.2), consider a system comprising a cell containing DNA and other molecules.
The output of interest might be the observed part of this system that is the
protein expressed from a gene. The question is whether that output has been
produced via the irreducible use of compute/signal cycles along the way.

Both representation (from physical to abstract) and instantiation (abstract
to physical) are one:many maps. That is, a given physical system has many pos-
sible abstract representations (under different relations), and a given abstract
object has many possible physical instantiations. If a physical object qua phys-
ical object is important in a biological process, then no other object will do: if
p itself is needed in a process, then some other p1 will not do. However, if it
is the abstract object and evolution that matters, then it is mp that is needed;
and there will in general be multiple ways in which this abstract object can be
instantiated in a physical system.

It is precisely this multiplicity of mappings that is described in §2.7 in the
context of computing and signalling. They are complex types of representational
activity, but the arbitrariness of encoding and decoding identified there has
its roots in the arbitrariness of representation, and the more broad type of
one:many mapping that is present in all representational activity. In computing,
it allows for the possibility of forming multiple alternative compute cycles. More
generally, it gives many implementations of a single abstract process.

This is the key to analysing when a biological system is computing intrinsi-
cally: if a certain process can or could occur in multiple different ways, all of
which instantiate a single abstract object or evolution, then this is the signature
that it is the abstract and not the physical operation that is important. Can an
arbitrariness of encoding and decoding within a given process be identified; and,
from this, can it be seen that the given cycle could be implemented in multiple
different physical systems with the same physical outcome at the end?

In order to make this precise, we here concentrate on the situation of in-
trinsic signalling within systems. As noted above, signalling can be viewed as
a simplified form of computing; and within AR theory they share almost all
their key elements. An ability to identify signalling and communication within
biological systems is an important stepping-stone to an eventual understanding
of when such systems compute. If signalling is present in a biological organism,
then according to AR theory it has almost all the relevant components in order
also to compute intrinsically.

Consider again the arbitrariness of encoding in signalling in designed repre-
sentational systems, figure 6. This figure starts and ends in the abstract domain
with the abstract signal S. By extending this to the intrinsic case, we give the
equivalent signatures of signalling happening where the representational entity
is not available for comment. In this situation, what is observed external to the
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Figure 7: An intrinsic use of signalling, with two possible signal carriers c or
c1 as an intermediary in the physical evolution p→ p′. The physical elements
q and r are subsystems of the system p. The different colours denote the two
separate signalling pathways.

system is an evolution of the whole system (eg a plant or a bacterium) from state
p to p′. By itself there is no way to determine if abstract objects or processes
are necessary to this process. However, if there is a part of this evolution that is
being implemented by the use of a signal, then there will be an identifiable use of
representation within the system, as shown in figure 7. Let q be some physical
subsystem of the overall physical system p; this is the part of the system that is
responsible for initiating the signal. The intrinsic use of signalling involves an
initial representation R of q ⊂ p as the abstract signal to be sent, S. This is
an instance of what is noted in §2.7 as primitive representation: the organism
itself has no ‘abstract model’ of itself, so there is no intermediate step between
the physical system and the abstract signal that is being encoded.

In order for the signal S to be transmitted, it is instantiated via R̃τ in the
physical signal carrier c. This physical carrier evolves to c′: standardly, it is
transmitted with no change in its state other than time or space coordinates. c′

is represented as signal S′ via Rτ . If the transmission is faithful, S′ ≈ S. Now
consider r, the part of the system p that is receiving the signal. By instantiating
S′ in the new state r′, the final state of the full system p′ is produced.

Figure 7 also shows an alternative pathway for the signal; it is the identi-
fiable possibility of these alternatives that gives us the signature of signalling
happening in these systems. The signal carrier c is not the only possible trans-
mission system: precisely as in figure 6, the signal S could also be instantiated
using R̃ν into a different physical system: here, c1. By decoding at the other
end using Rν , the same change to subsystem r is instantiated, and the same
physical evolution p→ p′ is effected. The system has evolved this way through
the fundamental use of representation: the different ways in which signal has
been transmitted have in common only that they are instantiations of a given
abstract object S.

The key then is that the semantics of the physical process that uses sig-
nalling as an intermediary are given by the abstract signal S, not the specific
physical carrier c, which is just one of many that could have been used to per-
form the critical abstract operation. The presence of other signal carriers is a
strong sign that representation is occurring fundamentally. This is not however
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an immediately sufficient criterion. In any given situation a close analysis of
the actual signalling pathways will need to be done to back up this hypothesis.
This requires a detailed understanding of the biology of the systems under con-
sideration, and a close interrogation of the best scientific understanding of each
individual system in order to identify all the separate levels of encoding, decod-
ing, and representation that must be present for such representational activity.
We turn to examples of such a detailed analysis in the next section.

This is then our challenge for identifying representation in biological systems:
determining where there is an arbitrariness in the physical process (another type
of physical system could perform the same operation), but where all the possible
processes are physical instantiations of a single abstract object or process. In
such a case, the physical objects and processes are functioning to instantiate
abstract processes, and we argue that the biological system is engaging in sig-
nalling; a stepping-stone towards a further analysis of systems where, in certain
cases, the biological system is computing.

4 Representation in biological systems

We now consider in detail three example biological systems. We will look specif-
ically at them as candidates for the presence of the intrinsic use of signalling
in biological organisms. This is a first stage towards, and proof-of-principle of,
how to consider computation (the most complex of the representation activities
considered here) in biological systems. As noted in the introduction, we focus
on relatively low-level systems far removed from the degree of organisation and
complexity needed for a neural/conscious organism. We consider specific pro-
cesses within the candidate systems, and interrogate them for the presence of
representation via the multiple realisability of information. We identify both
representation and computation present even at these low levels and contrast it
with an example where representational activity is not present.

4.1 Bacteria

Our first example is of bacteria that possess a motor-driven propellor called
a flagellum that enables them to move around in a watery environment. The
biological detail in this section is taken from the review article [21].

Such bacteria will swim towards food using their flagellum. The control
of the flagellar motor provides a clear example of computation by a biological
system, in which signals are processed and integrated through a series of in-
teractions between proteins. Receptor proteins that protrude through the cell
membrane detect the level of nutrient outside the cell. This information is
passed via the linker protein CheW to CheA. If the nutrient level is declining,
CheA transfers a phosphate group to CheY, which moves through the cell and
binds to a component of the flagellar motor. If enough CheY is bound, the
motor will switch direction from anticlockwise, which drives the cell forward,
to clockwise, which causes the cell to tumble, changing its orientation. (See
figure 8.)

In order to determine whether nutrient levels are declining, the system re-
quires a memory, so CheA also adds a phosphate to another protein CheB,
which takes methyl groups off the receptor proteins, reducing their ability to
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Figure 8: Some signalling pathways in E. coli. Taken from [21].

activate CheA. This happens on a slower timescale, providing a ‘memory’ of
the average of recent conditions. The net result of all this protein chemistry is
that a bacterium that experiences steady or increasing nutrient concentrations
keeps swimming in the same direction, but if it is heading into a region with
less nutrient, it stops, spins round, and tries a different direction at random.

The system just described has been investigated in detail in the well-known
bacterium Escherichia coli, but many other bacteria have variants of the same
system. In Rhodobacter sphaeroides, there is an additional set of internal recep-
tors that monitor the level of nutrients inside the cell and modulate the system
appropriately. In other words, before chasing food, it asks itself ‘am I hungry?’
and integrates that information with the external nutrient situation to deter-
mine its behaviour. Although these two bacteria use related systems to process
the information, the actual nature of the nutrients detected is different: E. coli
senses amino acids and sugars, whereas R. sphaeroides is attracted to acids such
as acetate. Hence, the same internal protein-based process represents different
external realities. The arbitrariness of the representation is further emphasised
by a consideration of more distantly related bacteria such as Bacillus subtilis, in
which the meaning of the pathway is inverted because it has a different ‘mem-
ory’ mechanism, so that the phosphate-bound form of CheY promotes smooth
swimming, rather than tumbling. Furthermore, the same basic information pro-
cessing system has been adapted to handle different kinds of input and output.
Besides attractants and internal nutrient status, inputs can include repellants,
oxygen and light, while the system can be used to control other complex be-
haviours such as developmental gene expression, cyst or biofilm formation.

This bacterial control system makes complex and integral use of representa-
tion through signalling, and even some signal processing. The receptor proteins
serve as transducers that convert various external inputs into an arbitrary in-
ternal representation. This representation is then manipulated, integrating in-
formation (including a memory of past states) to generate an output signal that
then leads to action by the flagellum or other transducers. Each bacterium has
multiple receptors – sometimes dozens – and may have several pathways operat-
ing in parallel with different inputs and possibly different outputs. By comparing
different signalling pathways across different bacteria, as well as within a single
instance, we can see the arbitrariness of the signal carrying substrate in action.

To see in detail how this system satisfies the AR category for signalling we
consider again the specific example of E. coli, comparing the schematic diagram
of its signalling pathways, figure 8, with that for intrinsic signalling in AR
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c : CheY at receptor c′ : CheY at motor

q : receptor protein

r : flagellar motor off

q : receptor protein

r′ : flagellar motor on
p′p

S : Food! S ′ : Food!

Figure 9: Signalling in the E. Coli bacterium

theory, figure 7. The bacterium itself is the full system p, and we isolate the
three subsystems needed for an AR description of signalling. The receptor
proteins form the subsystem initiated the signal, q. The CheY proteins are the
signal carriers c, and finally the flagellar motor forms the subsystem receiving
the signal, r.

The AR signalling schematic for the system is shown in figure 9. The part
of the full bacterial system p that senses the external environment is q, the
receptor. This is represented as a signal (“nutrient level rising”, or, more simply,
“food!”). The signal to be sent is instantiated as the CheY proteins, sent from
the receptor to the flagellum. The protein at the flagellum represents “food!”,
which is then instantiated as the required action of another subsystem of the
bacterium: the flagellar motor r.

We have drawn figure 9 using single instantiation and representation steps for
simplicity (see figure 6b,c). However, in this system these steps are non-trivial.
First, a single signal S, indicating rising nutrient levels, is instantiated into
multiple carrier protein molecules: it is the number of CheY which determines
the signal. Then representation back to the signal S′ combines the multiple
molecules of the signal carriers into a single signal.

The multi-instantiation within this system is seen in the different ways in
which the signal can be instantiated in different carriers. Different proteins could
be used, as seen in different bacteria, and the essential role of the instantiation
and representation steps make plain the central role of the CheY proteins as
carrying the signal rather than anything else intrinsic to their physical state.
The proteins themselves do not ‘carry information’ in isolation; it is their con-
centration that determines whether a signal is transmitted and received. Only
in the context of the flagellar motor receptors does the number of CheY pro-
teins form a representation of a signal. Without that representational context,
the signal would not be transmitted. As it is, the bacterium forms a closed
representational system with the use of signalling integral to its final physical
output: it is signalling intrinsically.

We have concentrated here on the signalling pathways; however, as noted
above, there is also an amount of signal processing going on, in particular during
the steps we have indicated as representation/instantiation (the signal involves
multiple protein molecules). It is still to be determined (and in fact pre-dates
AR theory as an open question in computer science) what minimal degree of
signal processing is required before a system is performing intrinsic computation.
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UTT Phe TCT Ser TAT Tyr TGT Cys
TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA Stop TGA∗ Stop
TTG Leu TCG Ser TAG Stop TGG Trp

CTT Leu CCT Pro CAT His CGT Arg
CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg

ATT Ile ACT Thr AAT Asn AGT Ser
ATC Ile ACC Thr AAC Asn AGC Ser
ATA∗ Ile ACA Thr AAA Lys AGA∗ Arg
ATG Met ACG Thr AAG Lys AGG∗ Arg

GTT Val GCT Ala GAT Asp GGT Gly
GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Figure 10: The genetic code. How the 64 DNA codons map to 20 amino acids
and a stop signal. This code is almost universal. But in vertebrate mitochondria,
the starred codons code differently.

This is an important open question for further research.

4.2 DNA

We now turn to the area of biology where the language of information, encod-
ing, and decoding is arguably the most used: DNA systems as they store and
transmit the data used for the construction of cellular life. There are a number
of redundancies in the way information is coded in DNA, demonstrating a key
instance of the use of intrinsic representation in biological systems.

DNA is a heteropolymer, a sequence comprised of four different nucleotide
bases: adenine, cytosine, guanine, and thymine. Triplets of bases (called codons)
encode, or represent, particular amino acids, and sequences of triplets represent
sequences of amino acids, or proteins. The genetic code is the particular map-
ping between base triplets and the corresponding amino acids; see figure 10.

The transfer of information from DNA to protein happens in two stages.
First, a copy of the DNA is made in RNA, a molecule that is chemically different
from DNA but has the same structure. This messenger RNA (mRNA) represents
the DNA sequence base for base. It is the same text, just in a different font,
so the process is ‘transcription’. The translation from codons to amino acids
is realised by a small molecular machine called a tRNA (transfer RNA). This
has two ‘ends’, one of which binds to a codon of the mRNA, and the other to
an amino acid, figure 11. The tRNAs are the dictionary entries that map the
‘words’ in the language of DNA into the protein language, so this is aptly called
‘translation’. This translation exhibits the first of the levels of redundancy: in
most cases, multiple codons are translated to a given amino acid.

As with the case of bacteria, we can analyse this system from within the
framework of AR theory. As in the previous example, the output of the AR cycle
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Figure 11: Production of amino acids through translation from mRNA codons
via tRNA within a ribosome. Taken from [17].
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Figure 12: Signalling in the genetic code.
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is a physical system: the amino acid produced. This is comparable with the
bacterial output, which was the specific motion of the flagellum in the direction
of food. While this physical output is specific, much of the intermediate stage
includes the arbitrariness that we see in the use of intrinsic representation. The
system begins with the “physical encoding” step, where the structure of the
codon is instantiated in the tRNA. This is similar to the first stage of signalling
within a bacterium.

Figure 12 illustrates this situation in terms of signalling in AR theory. The
signal S is “make a given amino acid”. A codon represents an amino acid; this
representation is instantiated in a tRNA. Different codons, with their associated
tRNAs can represent and instantiate the same amino acid. In this system, there
are multiple pairs of subsystem q (codon) and c (tRNA), but only a single signal
S and the physical output result r′ (amino acid).

There are further places in the system where multiple representations and
instantiations can occur. For example, if the tRNAs were different, then the
genetic code would be different. In nature, the genetic code is almost universal
across organisms, but there are some naturally occurring minor differences in
the genetic code. In vertebrate mitochondria, TGA is not a stop codon, but
codes for tryptophan (Trp); ATA does not code for isoleucine (Ile), but for
methionine (Met); AGA and AGG become stop codons [19]. That is, these
codons represent different information in different contexts. Other organisms
have reassigned codons in many other ways. Similar styles of changes have also
been engineered within synthetic biology into the genetic code, for example in
order to add an extra amino acid [24]. One could also, in principle, have a very
different code, by altering all the tRNAs, and then altering the DNA so that
these new tRNAs still produce the original proteins.

Even without changing the genetic code itself, there is a certain arbitrariness
to the representation. For example, the DNA has to be read three bases at a
time to form codons, but where to start? This is defined by the reading frame.
Some DNA in viruses and mitochondria supports multiple reading frames [5].
So the same piece of DNA can represent different proteins, corresponding to
different reading frames.

The underlying nucleotide bases structure of DNA has been extended with
further ‘unnatural’ base pairs, extending the A-T C-G pairs [27]. Such extended
DNA has been included in a plasmid, inserted into E. coli, and successfully
replicated [15]. Potentially, new nucleotides can expand the codon dictionary
and be translated into novel amino acids [3].

4.3 Photosynthesis

As a final example, we consider the energy transport processes in photosynthe-
sis. It is a complex process involving specialised cell structures in a cascading
sequence of excitations until the electromagnetic energy of the incoming light
has been converted into chemical energy in molecules in the cells. This is ac-
complished by using an incoming photon (a quantum unit of light) to create an
exciton (a quantum quasi-particle) in the light-harvesting molecules. Roughly
speaking, an exciton is what you get when several electrons are excited into
higher energy levels in a collective way. This then needs to be transported to
the molecular reaction centre, where the chemical reactions can take place to
store the energy. During transport, the exciton moves through the molecules,
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Figure 13: A commuting ‘science’ diagram (cf figure 2d). Note we have a
representation relation at both the beginning and end of the physical evolution.
There is no instantiation relation, and hence no computing occurring here.

losing a fraction of its energy to vibrations in the molecules. This energy loss
allows the dynamic process of energy transfer to proceed. A lower energy exci-
ton will fit into neighbouring electron excitations better than the current ones,
so the excitations transfer. This clearly requires exquisitely tuned molecular
structures, and these have been intensively studied to understand the process
in detail [9, 6].

Photosynthesis has caught the attention of the quantum information com-
munity, who have contributed insights to our understanding of how exactly this
process works so well [16, 20]. As anyone who has ever suffered sunburn will
know, photons from the sun can be dangerous. They are capable of breaking
chemical bonds and thus damaging essential cellular machinery. It is crucial
that the captured incoming photon is safely transferred to the reaction cen-
tre without causing unwanted rearrangement of the cell’s molecules; energy is
conserved, so it has to go somewhere once inside the cell. Achieving this high
transfer efficiency is best explained using quantum mechanics to describe how
the collective excitations maintain coherence to transfer the energy step by step.
These processes are well-studied in the quantum information context, enabling
fragile quantum information to be transported and stored, or processed in quan-
tum computers.

Within the context of photosynthesis, however, these collective excitations
are not being used by a leaf (or other photosynthesising system) to store or
process quantum information. There has been an element of confusion present in
the quantum information community since the discovery that this transmission
can be modelled as a quantum walk [16], which is a process that can be used in
quantum computing, and which can find the shortest path between two points
faster than a classical random walk. Problems arise when these results are
mistakenly seen to demonstrate that an exciton is ‘quantum-computing’ the
shortest path to the reaction centre.

We can see within AR theory why it is not the case that a light-harvesting
complex is computing, or indeed engaged in any other representational activity.
The aim of photosynthesis is the transmission of the exciton: the semantics of
this process can be understood entirely ‘below the line’ as a physical process
transmitting energy, without needing to describe the system as intrinsically rep-
resenting anything. There are multiple different ways that this process could be
implemented, with different energy carriers, but they all involve the carrying of
the energy in the exciton, not storing or processing any information. There is
no multiplicity of instantiation of an abstract object (a signal or other informa-

22



tion) created intrinsically by the light-harvesting complex itself. We can draw
a ‘science’ diagram of our external representation of the process (figure 13), but
not a signalling diagram involving intrinsic representation and instantiation of
a signal.

As always, the key is to look to our best theories of the process under con-
sideration: do they represent the system as itself representing information, or
is that a description that can be given only post hoc, in the presence of external
representational entities? In photosynthesis, a full description of the process of
energy transmission requires only the physical elements of the exciton. If there
is some information being computed that is essential for the process (such as a
shortest path), then we would expect multiple ways this could be instantiated
for a given exciton. However that is not the case: there is no mechanism for
a given exciton to get the ‘information’ about the shortest path to the reac-
tion centre by using a different physical mechanism. The specific exciton being
transported has to undergo quantum coherent transmission, and nothing else.
There is no signature of representational activity present intrinsically.

Photosynthesis is an example of the problems that arise with a failure to
distinguish between intrinsic and imposed representational activity in natural
systems. A light-harvesting complex plus photon/exciton considered in terms
of computing a shortest path is not a closed representational system: RT for
this system would need to be set up by external representational entities (eg.
physicists or biologists looking at the system in this way). There is no evidence
for the system itself using this representation of the process in order to complete
the energy transport. In fact, even with an external entity imposing a repre-
sentation in terms of information processing, a single instance of photosynthesis
is still not computing: the representation is imposed post hoc as a parallel de-
scription of the physical process, but the physical system is not being used to
predict the outcome of any abstract evolution. In the absence of a prediction
element, the system does not satisfy the conditions for computation. Only if
a photosynthesising organism were engineered into a larger computing system,
and the path of the exciton used to encode some other abstract object, would
the process of photosynthesis be computing. As it stands, it is a purely physical
process, with no evidence for any intrinsic representational activity.

5 Summary and Conclusions

We have described in some detail our abstraction-representation framework in
which representational activity such as signalling or computation can be iden-
tified in simple living systems that are far below the sophistication of nervous
systems or consciousness. Crucial to identifying representation is the arbitrari-
ness of the systems used to represent the information concerned, information
such as ‘hungry’ or ‘food molecules detected’. However, since in many cases
the same molecules can be processed both as a source of energy (food) and as
triggers for behaviour modification (swim towards food), identifying such sys-
tems as representational requires a detailed analysis of the processes. Often this
means studying a whole class of organisms to draw out common features that
are united by the representational activity. That life uses arbitrary represen-
tations at a fundamental level is most clearly illustrated by the variations in
the encoding of amino acids by DNA. Conversely, there are many systems that
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are dedicated to processing energy, to power the cellular machinery, and these
do not a priori need to include any representational activity. There is clearly
much further work to be done to elucidate the conditions that identify repre-
sentation in biological systems, including determination of the simplest possible
representational system, and the ubiquity of representation in living organisms.
Our framework is designed to bring clarity to this endeavour, by clearly defining
what it means to be representational and how to identify when it is, and is not,
occurring.

References

[1] Andrew Adamatzky. Physarum Machines: Computers from Slime Mould.
World Scientific, 2010.

[2] Martyn Amos. Theoretical and Experimental DNA Computation. Springer,
2005.

[3] J. D. Bain, C. Switzer, A. R. Chamberlin, and S. A. Benner. Ribosome-
mediated incorporation of a non-standard amino acid into a peptide
through expansion of the genetic code. Nature, 356(6369):537–539, 1992.

[4] Roger Brent and Jehoshua Bruck. 2020 computing: Can computers help
to explain biology? Nature, 440:416–417, 2006.

[5] Nicola Chirico, Alberto Vianelli, and Robert Belshaw. Why genes over-
lap in viruses. Proceedings of the Royal Society B: Biological Sciences,
277(1701):3809–17, 2010.

[6] M. Cho, H. M. Vaswani, J. Stenger T. Brixner, and G. R. Fleming. Exciton
analysis in 2D electronic spectroscopy. J. Phys. Chem. B, 109(21):10542–
10556, 2005.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium
on Principles of programming languages, pages 238–252. ACM, 1977.

[8] Thomas B. DeMarse and Karl P. Dockendorf. Adaptive flight control with
living neuronal networks on microelectrode arrays. In Proceedings, 2005
IEEE International Joint Conference on Neural Networks. IJCNN’05., vol-
ume 3, pages 1548–1551. IEEE, 2005.

[9] G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, Y.-C. Cheng T. Man-
cal, R. E. Blankenship, and G. R. Fleming. Evidence for wavelike energy
transfer through quantum coherence in photosynthetic systems. Nature,
446:782–786, 2007.

[10] Jifeng He, CAR Hoare, and Jeff W Sanders. Data refinement refined re-
sume. In ESOP 86, pages 187–196. Springer, 1986.

[11] C. Horsman, Susan Stepney, and Viv Kendon. When does an unconven-
tional substrate compute? In UCNC 2014 Poster Proceedings, 2014. Uni-
versity of Western Ontario Technical Report #758.

24



[12] C. Horsman, Susan Stepney, Rob C. Wagner, and Viv Kendon. When
does a physical system compute? Proceedings of the Royal Society A,
470(2169):20140182, 2014.

[13] Dominic C. Horsman. Abstraction/representation theory for heterotic
physical computing. Philosophical Transactions of the Royal Society A,
373:20140224, 2015.

[14] Viv Kendon, Angelika Sebald, and Susan Stepney. Heterotic computing:
past, present and future. Philosophical Transactions of the Royal Society
A, 373:20140225, 2015.

[15] Denis A. Malyshev, Kirandeep Dhami, Thomas Lavergne, Tingjian Chen,
Nan Dai, Jeremy M. Foster, Ivan R. Correa, and Floyd E. Romesberg.
A semi-synthetic organism with an expanded genetic alphabet. Nature,
509(7500):385–388, 2014.

[16] M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik. Environment-
assisted quantum walks in photosynthetic energy transfer. J. Chem. Phys.,
129:174106, 2008.

[17] National Institute of General Medical Sciences. The New Genetics. NIH
Publication No.10-662, 2010. Available at http://www.nigms.nih.gov.

[18] Saket Navlakha and Ziv Bar-Joseph. Distributed information processing
in biological and computational systems. Communications of the ACM,
58(1):94–102, 2015.

[19] Syozo Osawa, Thomas H. Jukes, Kimitsuna Watanabe, and Akira Muto.
Recent evidence for evolution of the genetic code. Microbiological Reviews,
56(1):229–264, 1992.

[20] M. B. Plenio and S. F. Huelga. Dephasing assisted transport: Quantum
networks and biomolecules. New J. Phys., 10:113019, 2008.

[21] Steven L. Porter, George H. Wadhams, and Judith P. Armitage. Signal
processing in complex chemotaxis pathways. Nature Reviews Microbiology,
9(3):153–165, 2011.

[22] Aviv Regev and Ehud Shapiro. Cellular abstractions: Cells as computation.
Nature, 419:343, 2002.

[23] Baojan Wang, Richard Kitney, Nicolas Joly, and Martin Buck. Engineer-
ing modular orthogonal genetic logic gates for robust digital-like synthetic
biology. Nature Communications, 2(508), 2011.

[24] Qian Wang, Angela R. Parrish, and Lei Wang. Expanding the genetic code
for biological studies. Chemistry and Biology, 16(3):323–336, 2009.

[25] Abdul Rashid War, Michael Gabriel Paulraj, Tariq Ahmad, Abdul Ahad
Buhroo, Barkat Hussain, Savarimuthu Ignacimuthu, and Hari Chand
Sharma. Mechanisms of plant defense against insect herbivores. Plant
signaling & behavior, 7(10):1306–1320, 2012.

25



[26] John Wooley and Herbert Lin, editors. Catalyzing inquiry at the interface
of computing and biology. National Academies Press, 2005.

[27] Zunyi Yang, Daniel Hutter, Pinpin Sheng, A. Michael Sismour, and
Steven A. Benner. Artificially expanded genetic information system: a new
base pair with an alternative hydrogen bonding pattern. Nucleic Acids
Research, 34(21):6095–6101, 2006.

26


