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Abstract

The vertex colouring problem is known to be NP-complete in the class of triangle-free
graphs. Moreover, it is NP-complete in any subclass of triangle-free graphs defined by a finite
collection of forbidden induced subgraphs, each of which contains a cycle. In this paper, we
study the vertex colouring problem in subclasses of triangle-free graphs obtained by forbid-
ding graphs without cycles, i.e. forests, and prove polynomial-time solvability of the problem
in many classes of this type. In particular, our paper, combined with some previously known
results, provides a complete description of the complexity status of the problem in subclasses
of triangle-free graphs obtained by forbidding a forest with at most 6 vertices.
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1. Introduction

A vertex colouring is an assignment of colours to the vertices of a graph G in such a way that
no edge connects two vertices of the same colour. The vertex colouring problem consists
of finding a vertex colouring with the minimum possible number of colours. This number is
called the chromatic number of G and is denoted by χ(G). If G admits a vertex colouring with
at most k colours, we say that G is k-colourable. The k-colourability problem consists of
deciding whether a graph is k-colourable and finding such a colouring, if it exists.

From a computational point of view, vertex colouring and k-colourability (k ≥ 3)
are difficult problems, i.e. both of them are NP-complete. Moreover, the problems remain NP-
complete in many restricted graph families. For instance, 3-colourability is NP-complete
for planar graphs [11], 4-colourability is NP-complete for graphs containing no induced
path on 8 vertices [6], vertex colouring is NP-complete for line graphs [16]. On the other
hand, for graphs in some special classes, the problems can be solved in polynomial time. For
instance, 3-colourability is solvable for graphs containing no induced path on 6 vertices [32],
k-colourability (for any value of k) is solvable for graphs containing no induced path on 5
vertices [15], and vertex colouring (and therefore also k-colourability for any value of
k) is solvable for perfect graphs [14].

Recently, much attention has been paid to the complexity of the problems in graph classes
defined by forbidden induced subgraphs. Many results of this type were mentioned above, some
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others can be found in [2, 5, 7, 17, 18, 20, 21, 22, 27, 33, 36]. In [21], the authors systematically
study vertex colouring on graph classes defined by a single forbidden induced subgraph, and
give a complete characterisation of those for which the problem is polynomial-time solvable and
those for which it is NP-complete. In particular, the problem is NP-complete for triangle-free
graphs. More generally, from the results in [17] it follows that the problem is NP-complete in
any subclass of triangle-free graphs defined by a finite collection of forbidden induced subgraphs,
each of which contains a cycle. This motivates us to study the problem in subclasses of triangle-
free graphs obtained by forbidding graphs without cycles, i.e. forests. In this paper we prove
polynomial-time solvability of the problem in many classes of this type. In particular, our
results, combined with some previously known facts, provide a complete description of the
complexity status of the problem in subclasses of triangle-free graphs obtained by forbidding a
forest with at most 6 vertices.

All preliminary information related to the topic of the paper can be found in Section 2,
while open problems are discussed in Section 7.

2. Preliminaries

All graphs in this paper are finite, undirected, without loops or multiple edges. For any graph
theoretical terms not defined here, the reader is referred to [12]. For a graph G, let V (G) and
E(G) denote the vertex set and the edge set of G, respectively. If v is a vertex of G, then
N(v) denotes the neighbourhood of v (i.e. the set of vertices adjacent to v) and |N(v)| is the
degree of v. The subgraph of G induced by a set of vertices U ⊆ V (G) is denoted by G[U ].
For disjoint sets A,B ⊆ V (G), we say that A is complete to B if every vertex in A is adjacent
to every vertex in B, and that A is anticomplete to B if every vertex in A is non-adjacent to
every vertex in B.

As usual, Pn is a chordless path, Cn is a chordless cycle, and Kn is a complete graph
on n vertices. Also, Kn,m denotes a complete bipartite graph with parts of size n and m.
Si,j,k denotes a tree with exactly three leaves, which are at distance i, j and k from the only
vertex of degree 3. In particular, S1,1,1 = K1,3 is known as a claw, and S1,2,2 is sometimes
denoted by E, since this graph can be drawn as the capital letter E. H denotes the graph that
can be drawn as the capital letter H, i.e. H has vertex set {v1, v2, v3, v4, v5, v6} and edge set
{v1v2, v2v3, v2v4, v4v5, v4v6}. The graph obtained from a K1,4 by subdividing exactly one edge
exactly once is called a cross. Given two graphs G and G′, we write G + G′ to denote the
disjoint union of G and G′. In particular, mG is the disjoint union of m copies of G.

The clique-width of a graph G is the minimum number of labels needed to construct G using
the following four operations:

(i) Creating of a new vertex v with label i (denoted by i(v)).

(ii) Taking the disjoint union of two labelled graphs G and H (denoted by G⊕H).

(iii) Joining each vertex with label i to each vertex with label j (i 6= j, denoted by ηi,j).

(iv) Renaming label i to j (denoted by ρi→j).

Every graph can be defined by an algebraic expression using these four operations. For instance,
an induced path on five consecutive vertices a, b, c, d, e has clique-width equal to 3 and it can
be defined as follows:

η3,2(3(e)⊕ ρ3→2(ρ2→1(η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a)))))))))
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Graph Graph Name Complexity Reference
b

b

b

bb

b Cross P [31]

bb

b

bb

b S1,2,2 P [30]

bb

bb

bb H P [30] (see also Theorem 7 for a shorter proof)
b

b

b

b

b

b

K1,5 NPC [27]
b

b

b

b

b

b

P4 + P2 P [6] (see also Theorem 4 for a more general result)
b

b

b

b

b

b

2P3 P [7]

Table 1: Forests F for which the complexity of vertex colouring in the class Free(K3, F ) is known.

If a graph G does not contain induced subgraphs isomorphic to graphs from a set M , we
say that G is M -free. The class of all M -free graphs is denoted by Free(M), and M is called
the set of forbidden induced subgraphs for this class. Note that such classes C are hereditary in
the sense that if G ∈ C and v ∈ V (G) then G \ v ∈ C. Many graph classes that are important
from a practical or theoretical point of view can be described in terms of forbidden induced
subgraphs. For instance, by definition, forests form the class of graphs without cycles, and
due to König’s Theorem, bipartite graphs are graphs without odd cycles. Bipartite graphs
are precisely the 2-colourable graphs, and recognising 2-colourable graphs is a polynomially
solvable task. However, the recognition of k-colourable graphs is an NP-complete problem for
any k ≥ 3.

In the present paper, we study the computational complexity of the vertex colour-

ing problem in subclasses of triangle-free graphs. The family of these classes contains both
NP-complete and polynomially solvable cases of the problem. For classes defined by a single
additional forbidden induced subgraph, a summary of known results is presented in the follow-
ing theorem (see also Table 1), where we also prove one more result that can easily be derived
from known results.

Theorem 1. Let F be a graph. If F contains a cycle or F = K1,5, then the vertex colouring

problem is NP-complete in the class Free(K3, F ). If F is isomorphic to S1,2,2, H, cross, P4 +
P2, 2P3 or P6, then the problem is polynomial-time solvable in the class Free(K3, F ).

Proof. If F contains a cycle, then the NP-completeness of the problem follows from the fact
that it is NP-complete for graphs of girth at least k + 1, i.e. in the class Free(C3, C4, . . . , Ck),
for any fixed value of k (see e.g. [17, 21]). The NP-completeness of the problem in the class of
(K3,K1,5)-free graphs was shown in [27].

In [29, 30, 31] Randerath et al. showed that every graph in the following three classes is
3-colourable and that a 3-colouring can be found in polynomial time: Free(K3, H), Free(K3,
S1,2,2), Free(K3, cross). Therefore vertex colouring is polynomial-time solvable in these
three classes.

The polynomial-time solvability of the problem in the class Free(K3, P4 + P2) was shown
in [6] and for the class Free(K3, 2P3), it was proved in [7].

The conclusion that the problem is solvable for (K3, P6)-free graphs can be derived from two
facts. First, the clique-width of graphs in this class is bounded by a constant [4]. Second, the
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vertex colouring problem is solvable in polynomial time on graphs of bounded clique-width
[34].

A particular corollary of this theorem is that the vertex colouring problem is solvable
in any subclass of triangle-free graphs defined by forbidding a forest with at most 5 vertices.

Corollary 1. For each forest F on 5 vertices, the vertex colouring problem in the class
Free(K3, F ) is solvable in polynomial time.

Proof. If F contains no edge, then the problem is trivial in the class of Free(K3, F ), since the
size of graphs in this class is bounded by a constant (by Ramsey’s Theorem). If F contains at
least one edge, then it is an induced subgraph of at least one of the following graphs: H, S1,2,2,
cross, P6. Therefore Free(K3, F ) is a subclass of one the classes Free(K3, H), Free(K3, S1,2,2),
Free(K3, cross), Free(K3, P6), and thus the result follows from Theorem 1.

In the subsequent sections we study subclasses of triangle-free graphs defined by forbidding
forests with more than 5 vertices and prove polynomial-time solvability of the problem in many
classes of this type.

3. (K3, F )-free graphs with F containing an isolated vertex

In this section we study graph classes Free(K3, F ) with F being a forest on 6 vertices, at least
one of which is isolated. Without loss of generality we may assume that F contains at least one
edge, since otherwise there are only finitely many graphs in the class Free(K3, F ) (by Ramsey’s
Theorem). Throughout the section, an isolated vertex in F is denoted by v and the rest of the
graph is denoted by F0, i.e. F0 = F − v.

Lemma 1. Let F be a forest on 6 vertices with at least one edge and at least one isolated
vertex. Then the chromatic number of any graph G in the class Free(K3, F ) is at most 4 and
a 4-colouring can be found in polynomial time.

Proof. Suppose that F0 6= P3 + P2. Then it is not difficult to verify that F0 is an induced
subgraph of H, S1,2,2 or cross. Therefore the chromatic number of (K3, F0)-free graphs is at
most 3 (see [30, 31]). As a result, the chromatic number of any (K3, F )-free graph is at most
4. To see this, observe that for any vertex x, the graph G \N(x) is 3-colourable, while N(x) is
an independent set.

Now let F0 = P3 + P2. Let ab be an edge in a (K3, F )-free graph G. (If G has no edges,
the chromatic number is 1 and we are done.) We will show that G0 := G− (N(a) ∪N(b)) is a
bipartite graph. Notice that since G is K3-free, both N(a) and N(b) induce an independent set.
We may assume that at least one ofN(a)\{b}, N(b)\{a} is non-empty (otherwise each connected
component of G has at most two vertices and thus G is trivially 4-colourable). Obviously G0

is Ck-free for any odd k ≥ 7, since otherwise G contains a P3 + P2. Therefore we may assume
that G0 contains a C5 (otherwise G0 is bipartite). Let c ∈ N(b) \ {a}. Since G is triangle-free,
c can have at most two neighbours in the C5, and if it has two, they must be non-consecutive
vertices of the C5. Thus c is non-adjacent to at least three vertices in C5, say d, e, f , such that
G[d, e, f ] is isomorphic to P2 + K1. But now G[a, b, c, d, e, f ] is isomorphic to P3 + P2 + K1,
which is a forbidden graph for G. This contradiction shows that G0 has no odd cycles, i.e. G0

is a bipartite graph. If V 1
0 , V

2
0 are two colour classes of G0, then N(a), N(b), V 1

0 , V
2
0 are four

colour classes of G.
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Graph Graph Name

b

b

b

b

b

b

Empty
b

b

b

b

b

b

P2 + 4K1

b

b

b

b

b

b

P3 + 3K1

b

b

b

b

b

b

2P2 + 2K1
b

b

b

b

b

b

P3 + P2 +K1

b

b

b

b

b

b

K1,3 + 2K1

b

b

b

b

b

b

P4 + 2K1

b

b
b b b b S1,1,2 +K1

b

b

b

b

b

b

K1,4 +K1

b

b

b

b

b

b

P5 +K1

Table 2: Forests F for which polynomial-time solvability of vertex colouring in the class Free(K3, F ) follows
from Theorem 2.

In view of Lemma 1 and the polynomial-time solvability of 2-colourability, all we have
to do to solve the problem in the classes under consideration is to develop a tool for deciding
3-colourability in polynomial time. For this, we use a result from [33]. A set D ⊆ V (G) is
dominating in G if every vertex x ∈ V (G) \D has at least one neighbour in D.

Lemma 2. ([33]) For a graph G = (V,E) with a dominating set D, we can decide 3-colourability
and determine a 3-colouring in time O(3|D||E|).

If a graph G ∈ Free(K3, F ) is F0-free, then by Corollary 1, the problem is solvable for G

in polynomial time. If G has an induced F0, then the vertices of F0 form a dominating set in
G. Summarising the above discussion, we obtain the following result.

Theorem 2. Let F be a forest on 6 vertices with at least one isolated vertex. Then the vertex

colouring problem is polynomial-time solvable in the class Free(K3, F ).

All forests satisfying the conditions of Theorem 2 are listed in Table 2.

4. Graphs of bounded clique-width

In Section 2, we mentioned that the polynomial-time solvability of the vertex colouring

problem in the class of (K3, P6)-free graphs follows from the fact that the clique-width of
graphs in this class is bounded by a constant. In the present section we use that same idea to
solve the problem in the following two classes: Free(K3, S1,1,3) and Free(K3,K1,3 +K2).

This means that in order to prove polynomial-time solvability of the vertex colouring

problem in the classes Free(K3, S1,1,3) and Free(K3,K1,3 +K2), all we have to do is to show
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that the clique-width of graphs in these classes is bounded. In our proofs we use the following
helpful facts:

Fact 1: The clique-width of graphs with vertex degree at most 2 is bounded by 4 (see e.g. [10]).

Fact 2: The clique-width of S1,1,3-free bipartite graphs [24] and (K1,3 +K2)-free bipartite graphs
[26] is bounded by a constant.

Fact 3: For a constant k and a class of graphs X, let X[k] denote the class of graphs obtained
from graphs in X by deleting at most k vertices. Then the clique-width of graphs in X

is bounded if and only if the clique-width of graphs in X[k] is bounded [25].

Fact 4: For a graph G, the subgraph complementation is the operation that consists of com-
plementing the edges in an induced subgraph of G. Also, given two disjoint subsets of
vertices in G, the bipartite subgraph complementation is the operation which consists of
complementing the edges between the subsets. For a constant k and a class of graphs X,
let X(k) be the class of graphs obtained from graphs in X by applying at most k sub-
graph complementations or bipartite subgraph complementations. Then the clique-width
of graphs in X(k) is bounded if and only if the clique-width of graphs in X is bounded
[19].

Fact 5: The clique-width of graphs in a hereditary class X is bounded if and only if it is bounded
for connected graphs in X (see e.g. [10]).

Facts 2 and 5 allow us to reduce the problem to connected non-bipartite graphs in the
classes Free(K3, S1,1,3) and Free(K3,K1,3+K2), i.e. to connected graphs in these classes that
contain an odd induced cycle of length at least five.

Lemma 3. Let G be a connected (K3, S1,1,3)-free graph containing an odd induced cycle C of
length at least 7. Then G = C.

Proof. Let C = v1−v2−· · ·−v2k−v2k+1−v1 be an induced cycle in G, of length 2k+1, k ≥ 3.
Suppose that there exists a vertex v ∈ V (G)\V (C), which is adjacent to a vertex of C. Without
loss of generality, we may assume that v is adjacent to v1. We claim that v is non-adjacent
to v4. Otherwise, since G is K3-free, it follows that v is non-adjacent to v2k+1, v2, v3, v5. But
now G[v4, v3, v5, v, v1, v2k+1] is isomorphic to S1,1,3, a contradiction. Thus v is non-adjacent
to v4. This implies that v is adjacent to v3, since otherwise G[v1, v, v2k+1, v2, v3, v4] would be
isomorphic to S1,1,3. Now repeating the same argument with v3 playing the role of v1, we
conclude that v is adjacent to v5. But now G[v1, v2, v2k+1, v, v5, v4] is isomorphic to S1,1,3. This
contradiction shows that G = C.

Lemma 4. Let G be a connected (K3,K1,3 +K2)-free graph containing an odd induced cycle
C2k+1, k ≥ 3. If k ≥ 4 then G = C2k+1 and if k = 3 then |V (G)| ≤ 28.

Proof. Let C = v1 − v2 − · · · − v2k − v2k+1 − v1 be an induced cycle of length 2k + 1 in G.
First consider the case when k ≥ 4. Suppose that there exists a vertex v ∈ V (G) \ V (C)
which is adjacent to some vertex of C, say v1. Since G is K3-free, it follows that v is non-
adjacent to v2k+1, v2. We claim that for every pair of vertices {vi, vi+1}, with i = 4, 5, . . . , 2k−
2, vertex v is adjacent to exactly one of vi, vi+1. Clearly, since G is K3-free, v has a non-
neighbour in {vi, vi+1}. If v has no neighbours in {vi, vi+1}, then G[v1, v2, v, v2k+1, vi, vi+1]
is isomorphic to K1,3 + K2, a contradiction. Now suppose that v is adjacent to v4. Then it
follows that v is complete to {v4, v6, . . . , v2k−2} and anticomplete to {v5, v7, . . . , v2k−1}. But
then G[v2k−2, v, v2k−3, v2k−1, v2, v3] is isomorphic to K1,3 +K2, a contradiction. Thus we may
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assume that v is adjacent to v5. This implies that v is complete to {v5, v7, . . . , v2k−1} and
anticomplete to {v4, v6, . . . , v2k−2}. It follows that v is non-adjacent to v2k, since G is K3-free.
But now G[v5, v4, v6, v, v2k, v2k+1] is isomorphic to K1,3 + K2. This contradiction shows that
G = C.

Now consider the case where k = 3 and let v ∈ V (G) \ V (C) be adjacent to v1. As before,
v has exactly one neighbour in {v4, v5}. By symmetry, we may assume that v is adjacent to
v4. Hence v has no neighbours in {v2, v3, v5, v7}. Finally, observe that v is non-adjacent to v6,
since otherwise G[v6, v5, v7, v, v2, v3] would be isomorphic to K1,3 +K2. Therefore we conclude
that each vertex v ∈ V (G)\V (C) that is adjacent to some vertex vi ∈ V (C), is either complete
to {vi, vi+3} and anticomplete to V (C) \ {vi, vi+3}, or complete to {vi, vi+4} and anticomplete
to V (C) \ {vi, vi+4} (here subscripts are taken modulo 7).

Let Uj denote the set of vertices at distance j from the cycle. We claim that:

• |U1| ≤ 7. Indeed, if |U1| > 7, then there exist two vertices z, z′ ∈ U1 that are complete
to {vi, vi+3} (and thus anticomplete to V (C) \ {vi, vi+3}) for some value of i. Since G is
K3-free, z, z

′ must be non-adjacent. But then G[vi, z, z
′, vi+1, vi+4, vi+5] is isomorphic to

K1,3 +K2, a contradiction.

• Each vertex of U1 has at most one neighbour in U2. Indeed, suppose a vertex x ∈ U1 has
two neighbours y, z ∈ U2, and without loss of generality let x be complete to {vi, vi+3}
(and thus anticomplete to V (C) \ {vi, vi+3}). Since G is K3-free, it follows that y, z are
non-adjacent. But then G[x, y, z, vi, vi+4, vi+5] is isomorphic toK1,3+K2, a contradiction.

• Each vertex of U2 has at most one neighbour in U3, which can be proved by analogy with
the previous claim.

• For each i ≥ 4, Ui is empty. Indeed, assume without loss of generality that U4 6= ∅ and
let u4, u3, u2, u1 be a path from U4 to C with uj ∈ Uj and u1 being adjacent to vi. Then
G[vi, vi−1, vi+1, u1, u3, u4] is isomorphic to K1,3 +K2, a contradiction.

From the above claims we conclude that V (G) = V (C) ∪ U1 ∪ U2 ∪ U3, |U3| ≤ |U2| ≤ |U1| ≤
7 = |V (C)|, and therefore |V (G)| ≤ 28.

Thus Lemmas 3 and 4 and Fact 2 further reduce the problem to graphs containing a C5.

Lemma 5. If G is a connected (K3, S1,1,3)-free graph containing a C5, then the clique-width
of G is bounded by a constant.

Proof. Let G be a connected (K3, S1,1,3)-free graph and let C = v1 − v2 − v3 − v4 − v5 − v1 be
an induced cycle of length five in G. If G = C then the clique-width of G is at most 4 (Fact
1). Therefore we may assume that there exists at least one vertex v ∈ V (G) \V (C). Since G is
K3-free, v can be adjacent to at most two vertices of C, and if v has two neighbours in C, they
must be non-consecutive vertices of the cycle. We denote the set of vertices in V (G) \ V (C)
that have exactly i neighbours in C by Ni, i ∈ {0, 1, 2}. Also, for i = 1, . . . , 5, we let Vi denote
the set of vertices in N2 adjacent to vi−1, vi+1 ∈ V (C) (throughout the proof subscripts i are
taken modulo 5). We call two different sets Vi and Vj consecutive if vi and vj are consecutive
vertices of C, and opposite otherwise. Finally, we call Vi large if |Vi| ≥ 2, and small otherwise.
The proof of the lemma will be given through a series of claims.

(1) Each Vi is an independent set. This immediately follows from the fact that G is K3-free.
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(2) N0 is an independent set. Indeed, suppose xy is an edge connecting two vertices x, y ∈ N0,
and, without loss of generality, let y be adjacent to a vertex z ∈ N1 ∪N2. Let vi ∈ V (C)
be a neighbour of z. Since G is K3-free, z is non-adjacent to x, vi−1, vi+1. But then
G[vi, vi−1, vi+1, z, y, x] is isomorphic to S1,1,3, a contradiction.

(3) Any vertex x ∈ N1∪N2 has at most one neighbour in N0. Suppose x ∈ N1∪N2 is adjacent
to z, z′ ∈ N0, and let vi ∈ V (C) be a neighbour of x. Since G is K3-free, it follows that x
is non-adjacent to vi−1, vi+1. Furthermore, x is adjacent to at most one of vi−2, vi+2. By
symmetry we may assume that x is non-adjacent to vi−2. But now G[x, z, z′, vi, vi−1, vi−2]
is isomorphic to S1,1,3, a contradiction.

(4) |N1| ≤ 5. Indeed, if there are two vertices x, x′ ∈ N1 which are adjacent to the same
vertex vi ∈ V (C), then G[vi, x, x

′, vi+1, vi+2, vi+3] is isomorphic to S1,1,3, a contradiction.

(5) If Vi and Vj are opposite sets, then no vertex of Vi is adjacent to a vertex of Vj. This
immediately follows from the fact that G is K3-free.

(6) If Vi and Vj are consecutive, then every vertex x ∈ Vi has at most one non-neighbour in
Vj. Suppose x ∈ Vi has two non-neighbours y, y′ ∈ Vj . By symmetry, we may assume
that j = i+ 1. But now, by Claim (1), G[vi−3, y, y

′, vi−2, vi−1, x] is isomorphic to S1,1,3,
a contradiction.

(7) If Vi and Vj are two opposite large sets, then no vertex in N0 has a neighbour in Vi ∪ Vj .
Without loss of generality assume that i = 1 and j = 4, and suppose for a contradiction
that a vertex x ∈ N0 has a neighbour y ∈ V1. If x is non-adjacent to some vertex z ∈ V4,
then G[v3, v4, z, v2, y, x] is isomorphic to S1,1,3, a contradiction. Therefore x is complete
to V4. But now, by Claim (1), G[x, z, z′, y, v2, v1] with z, z′ ∈ V4 is isomorphic to S1,1,3,
a contradiction.

Since G is connected and N0 is an independent set, every vertex of N0 has a neighbour
in N1 ∪ N2. Let V0 be the set of vertices in N0, all of whose neighbours belong to the large
sets Vi. Let G0 be the subgraph of G induced by V0 and the large sets. From Claims (2),(3)
and (4), it follows that at most 25 vertices of G do not belong to G0. Therefore, by Fact 3,
the clique-width of G is bounded if and only if it is bounded for G0. We may assume that G

has at least one large set, since otherwise G0 is empty. We will show that G0 has bounded
clique-width by examining all possible combinations of large sets.

Case 1: Suppose that for every large set Vi there is an opposite large set Vj . Then it follows
from Claim (7) that V0 = ∅. In order to see that G0 has bounded clique-width, we complement
the edges between every pair of consecutive large sets. By Claims (5) and (6), the resulting
graph has maximum degree at most 2. From Fact 1 it follows that this graph is of bounded
clique-width, and therefore, applying Fact 4, G0 has bounded clique-width.

Case 1 allows us to assume that G contains a large set such that the opposite sets are small.
Without loss of generality we let V1 be large, and V3 and V4 be small. The rest of the proof is
based on the analysis of the size of the sets V2 and V5.

Case 2: V2 and V5 are large. Then, by Claims (1), (2), (5), and (7), G0 is a bipartite graph
with bipartition (V1, V2 ∪ V5 ∪ V0). Therefore by Fact 2, G0 has bounded clique-width.

Case 3: V2 and V5 are small. Then by Claims (1) and (2), G0 is a bipartite graph with
bipartition (V1, V0), and therefore, by Fact 2, G0 has bounded clique-width.

Case 4: V2 is large and V5 is small, i.e. G0 is induced by V0 ∪ V1 ∪ V2. Consider a vertex
x ∈ V0 that has a neighbour y ∈ V1 and a neighbour z ∈ V2. Then y and z are non-adjacent
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(since G is K3-free) and therefore, by Claim (6), y is complete to V2 \ {z} and z is complete to
V1 \ {y}. From the K3-freeness of G it follows that x is anticomplete to (V1 ∪ V2) \ {y, z}.

Let V ′
0 denote the vertices of V0 that have neighbours both in V1 and V2, and let V ′

i (i = 1, 2)
denote the vertices of Vi that have neighbours in V ′

0 . Also, let V
′′
i = Vi − V ′

i for i = 0, 1, 2, and
G′

0 = G0[V
′
0 ∪ V ′

1 ∪ V ′
2 ], G

′′
0 = G0[V

′′
0 ∪ V ′′

1 ∪ V ′′
2 ].

By Claim (3), V ′′
0 is anticomplete to V ′

1 ∪ V ′
2 . Also, it follows from the above discussion

that V ′
0 is anticomplete to V ′′

1 ∪ V ′′
2 , that V ′

1 is complete to V ′′
2 , and that V ′

2 is complete to
V ′′
1 . Therefore by complementing the edges between V ′

1 and V ′′
2 , and between V ′

2 and V ′′
1 ,

we disconnect G′
0 from G′′

0 . The graph G′′
0 is a bipartite graph, since every vertex of V ′′

0

has neighbours either in V ′′
1 or in V ′′

2 but not in both. Thus it follows from Fact 2 that G′′
0

has bounded clique-width. To see that G′
0 has bounded clique-width, we complement the

edges between V ′
1 and V ′

2 . This operation transforms G′
0 into a collection of disjoint triangles.

Therefore the clique-width of G′
0 is bounded. Now it follows from Fact 4 that G0 has bounded

clique-width.

Similarly to Lemma 5, one can prove the following result.

Lemma 6. If G is a connected (K3,K1,3+K2)-free graph containing a C5, then the clique-width
of G is bounded by a constant.

Proof. The proof is similar to the proof of Lemma 5. Let G be a connected (K3,K1,3+K2)-free
graph and let C = v1 − v2 − v3 − v4 − v5 − v1 be an induced cycle of length five in G. If G = C

then the clique-width of G is at most 4 (Fact 1). Therefore we may assume that there exists at
least one vertex v ∈ V (G)\V (C). Since G is K3-free, v can be adjacent to at most two vertices
in C, and if v has two neighbours in C, they must be non-consecutive vertices of C. We denote
the set of vertices in V (G) \ V (C) that have exactly i neighbours in C by Ni, i ∈ {0, 1, 2}.
Also, for i = 1, . . . , 5, we let Vi denote the set of vertices in N2 adjacent to vi−1, vi+1 ∈ V (C)
(throughout the proof subscripts i are taken modulo 5). We call two different sets Vi and Vj

consecutive if vi and vj are consecutive vertices of C, and opposite otherwise. Finally, we call
Vi large if |Vi| ≥ 7, and small otherwise. The proof of the lemma will be given through a series
of claims.

(1) Each Vi is an independent set. This immediately follows from the fact that G is K3-free.

(2) |N1| ≤ 10. Indeed, if there are three vertices x, x′, x′′ ∈ N1 which are adjacent to the
same vertex vi ∈ V (C), then G[vi, x, x

′, x′′, vi+2, vi+3] is isomorphic to K1,3 + K2, a
contradiction (notice that x, x′, x′′ are pairwise non-adjacent since G is K3-free).

(3) If Vi and Vj are opposite sets, then no vertex of Vi is adjacent to a vertex of Vj. This
immediately follows from the fact that G is K3-free.

(4) If Vi and Vj are consecutive, then every vertex of Vi has at most two non-neighbours in
Vj. By symmetry, we may assume j = i + 1. Suppose x ∈ Vi has three non-neighbours
y, y′, y′′ ∈ Vj . Then by Claim (1), G[vi+2, y, y

′, y′′, vi−1, x] is isomorphic to K1,3 +K2, a
contradiction.

(5) Each vertex w ∈ N0 is adjacent to at most two vertices in a set Vi. Indeed, if w ∈ N0

were adjacent to three vertices z, z′, z′′ ∈ Vi, then by Claim (1), G[w, z, z′, z′′, vi+2, vi+3]
would be isomorphic to K1,3 +K2, a contradiction.

(6) N0 induces a graph of vertex degree at most two. Moreover, if there exists at least one large
set, then N0 is an independent set. If a vertex w ∈ N0 has three neighbours z, z′, z′′ ∈ N0,
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then G[w, z, z′, z′′, v1, v2] is isomorphic toK1,3+K2, since G isK3-free. This contradiction
proves the first part of the claim. To prove the second part, assume Vi is a large set and
suppose that two vertices w,w′ ∈ N0 are adjacent. Since Vi is large, it follows from Claim
(5) that there exist at least three vertices z, z′, z′′ ∈ Vi which are anticomplete to {w,w′}.
But now, by Claim (1), G[vi−1, z, z

′, z′′, w, w′] is isomorphic to K1,3+K2, a contradiction.

(7) If Vi and Vj are two opposite large sets, then no vertex in N0 has a neighbour in Vi ∪ Vj .
Without loss of generality, assume that i = 1 and j = 4, and suppose for contradiction,
that a vertex w ∈ N0 has a neighbour y ∈ V1. Since V4 is large and since w is adjacent to
at most two vertices in V4 (Claim (5)), it follows that w has two non-neighbours z, z′ ∈ V4.
But now, by Claim (1), G[v3, v4, z, z

′, w, y] is isomorphic to K1,3 +K2, a contradiction.

(8) Any vertex x ∈ N1 ∪ N2 has at most two neighbours in N0. Indeed, for any vertex
x ∈ N1 ∪N2 there exist at least two consecutive vertices of C non-adjacent to x. These
two vertices together with x and any three neighbours of x in N0 would induce aK1,3+K2.

From Claim (6) and Fact 1 we know that the clique-width of G[N0] is at most 4. Therefore,
if all sets Vi are small, then G has bounded clique-width, which follows from Claim (2) and
Fact 3.

From now on, we assume that there exists at least one large set Vi. This implies that N0 is
an independent set (Claim (6)). Since G is connected, every vertex of N0 has a neighbour in
N1 ∪ N2. Let V0 be the set of vertices in N0, all of whose neighbours belong to the large sets
Vi. Let G0 be the subgraph of G induced by V0 and the large sets. From Claims (2) and (8), it
follows that the size of V (G) \ V (G0) is bounded. Therefore, by Fact 3, the clique-width of G
is bounded if and only if it is bounded for G0. We will show that G0 has bounded clique-width
by examining all possible combinations of large sets.

Case 1: Suppose that for every large set Vi there is an opposite large set Vj . Then it follows
from Claim (7) that V0 = ∅. Let Vi−1 and Vi+1 be large sets. We claim that every vertex x ∈ Vi

is complete to Vi−1 ∪ Vi+1. For suppose not: let y ∈ Vi+1 be a non-neighbour of x. Since Vi−1

is large, it follows from Claim (4) that x has at least two neighbours z, z′ ∈ Vi−1. But now,
by Claims (1) and (3), G[x, z, z′, vi−1, vi+2, y] is isomorphic to K1,3 +K2, a contradiction. In
order to see that G0 is of bounded clique-width, we complement the edges between every pair
of consecutive large sets. From Claim (4) and the discussion above, it follows that the resulting
graph is of vertex degree at most 2. From Fact 1 it follows that this graph has bounded
clique-width, and therefore applying Fact 4, G0 has bounded clique-width.

Case 1 allows us to assume that G contains a large set such that the opposite sets are small.
Without loss of generality we let V1 be large, and V3 and V4 be small. The rest of the proof is
based on the analysis of the size of the sets V2 and V5.

Case 2: V2 and V5 are large. Then by Claims (1),(3),(6) and (7), G0 is a bipartite graph
with bipartition (V1, V2 ∪ V5 ∪ V0). Therefore by Fact 2, G0 has bounded clique-width.

Case 3: V2 and V5 are small. Then, by Claims (1) and (6), G0 is a bipartite graph with
bipartition (V1, V0), and therefore, by Fact 2, G0 has bounded clique-width.

Case 4: V2 is large and V5 is small, i.e. G0 is induced by V0 ∪ V1 ∪ V2. Consider a vertex
w ∈ V0 that is adjacent to some vertex x ∈ V1 (resp. y ∈ V2). We claim that

(9) w is complete to all the non-neighbours of x in V2 (resp. of y in V1). By symmetry
we let x belong to V1 and for contradiction, suppose that w is non-adjacent to a non-
neighbour z ∈ V2 of x. Since V1 is large, it follows from Claims (4) and (5) that V1

contains three vertices x1, x2, x3 adjacent to z and non-adjacent to w. But now, by Claim
(1), G0[z, x1, x2, x3, x, w] is isomorphic to K1,3 +K2, a contradiction.
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In order to see that G0 has bounded clique-width, we complement the edges between V1 and
V2. Let us denote the resulting graph by G′

0. From Facts 4 and 5, it follows that it is enough to
show that each connected component of G′

0 has bounded clique-width. Let C∗ be a component
of G′

0. If C∗ has maximum vertex degree at most two, then C∗ has bounded clique-width by
Fact 1. So we may assume that C∗ contains a vertex x of degree at least three.

First suppose that x ∈ V1 ∪V2. By symmetry, we may assume x ∈ V1. We know that in the
graph G′

0 vertex x has at most two neighbours in V0 (Claim (8)) and at most two neighbours
in V2 (Claim (4)). Therefore, x is adjacent to some vertex y ∈ V2 and to some vertex w ∈ V0

in the graph G′
0. Since in the graph G0 vertex y is a non-neighbour of x, it follows from

Claim (9) that y, w are adjacent. Repeating this argument, we conclude that w is complete to
V (C∗) ∩ (V1 ∪ V2). By Claim (5), we obtain that |V (C∗) ∩ (V1 ∪ V2)| ≤ 4. Since each vertex in
V1 ∪ V2 has at most two neighbours in V0 (Claim (8)), we finally conclude that |V (C∗)| ≤ 12
and therefore the clique-width of C∗ is at most 12.

Now suppose that x ∈ V0 and all vertices of C∗ in V1 ∪ V2 have degree at most 2. Since V0

is an independent set, all neighbours of x are in V1 ∪ V2. Let z, z′, z′′ denote three neighbours
of x. Without loss of generality we may assume that z, z′ ∈ V1 and z′′ ∈ V2 (Claim (5)). Since
G is K3-free, it follows that in C∗, vertex z′′ is adjacent to both z, z′. But now z′′ ∈ V2 has
degree at least three, contradicting our assumption.

From Lemmas 3, 4, 5, and 6, we derive the main result of this section.

Theorem 3. The clique-width of (K3, S1,1,3)-free graphs and (K3,K1,3 + K2)-free graphs is
bounded by a constant and therefore the vertex colouring problem is polynomial-time solv-
able in these classes of graphs.

5. (K3, S1,2,3, S1,1,2 + P2)-free graphs

In this section we prove polynomial-time solvability of the problem in the class of (K3, S1,2,3,
S1,1,2+P2)-free graphs. It is not difficult to see that both S1,2,3 and S1,1,2+P2 contain P4+P2

as an induced subgraph. Therefore, our result generalizes a recent solution of the problem in
the class of (K3, P4 + P2)-free graphs [6]. Our result is based on a sequence of lemmas.

b

b

bb

b b

b

b

b

bb

b

b

b

Figure 1: The graphs S1,2,3 and S1,1,2 + P2.

Lemma 7. Let G be a (K3, S1,2,3, S1,1,2 + P2)-free graph. Then the chromatic number of G is
at most 4 and a 4-colouring of G can be found in polynomial time.

Proof. We may assume G is connected and contains an edge ab. Note that since G is K3-free,
G[N(a)∪N(b)] is a bipartite graph. Let X = V (G)\(N(a)∪N(b)). We will now show that G[X]
is bipartite, in which case G is 4-colourable. Indeed, suppose for contradiction that G[X] is not
bipartite. Then, since it is K3-free, it must contain an induced odd cycle v1 − · · · − v2k+1 − v1
with k ≥ 2.
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Let w1, w2, . . . , wq be a shortest path from this cycle to a, with wq = a and w1 = vi for
some i ∈ {1, . . . , 2k + 1}. If q = 3 then w2 ∈ N(a) \ {b}. In this case let w4 = b.

Vertex w2 cannot be adjacent to vi−1 or vi+1 since G is K3-free. But now w2 must be
adjacent to vi+2 otherwise G[vi, vi−1, vi+1, vi+2, w2, w3, w4] would be isomorphic to S1,2,3. Since
vertex vi was chosen arbitrarily, we can repeat this argument k times to find that w2 must be
adjacent to 2 consecutive vertices in the cycle. But this cannot happen, since G is K3-free.
This contradiction completes the proof.

Lemma 7 reduces vertex colouring in the class of (K3, S1,2,3, S1,1,2 + P2)-free graphs to
3-colourability. We now prove some lemmas to help solve this problem.

Lemma 8. Let G be a connected (K3, S1,2,3, S1,1,2 + P2)-free graph containing an odd induced
cycle C of length at least 9. Then G = C.

Proof. Let C = v1 − v2 − · · · − v2k+1 be an induced odd cycle of length at least 9 in G. Let
x be adjacent to some vertex vi on C. Then obviously it is adjacent to neither vi−1 nor vi+1,
since the graph is K3-free. If in addition it is non-adjacent to vi−2, then the subgraph of G
induced by vi, vi+1, vi−1, vi−2, x, vi+3, vi+4 is either isomorphic to S1,2,3 (if x has a neighbour
in {vi+3, vi+4}) or to S1,1,2+P2 (if x has no neighbour in {vi+3, vi+4}). Therefore, x is adjacent
to vi−2. But vi was an arbitrary vertex of the cycle, so as in the proof of Lemma 7, by iterating
this argument k times, we find that G must contain a K3, which is a contradiction.

Lemma 9. Let G be a connected (K3, S1,2,3, S1,1,2+P2)-free graph containing an induced cycle
C of length 7. Then C is dominating.

Proof. Suppose G is connected and contains an induced cycle C = v1−v2−v3−v4−v6−v7−v1.
If C is not dominating then there must exist vertices x and y such that y is not adjacent to
any vertex of the cycle and x is adjacent to both y and some vertex of the cycle, say v1. x

is non-adjacent to v2 and v7 since G is K3-free. So x must be adjacent to v4 or v5, otherwise
G[v1, v2, v7, x, y, v4, v5] would be isomorphic to S1,1,2 + P2. Without loss of generality, assume
that x is adjacent to v4. Since G is K3-free, x is non-adjacent to v3 and v5. Now, x must
be adjacent to v6, otherwise G[v1, x, v2, v3, v7, v6, v5] would be isomorphic to S1,2,3. But then
G[v6, v5, v7, x, y, v2, v3] is isomorphic S1,1,2+P2. This contradiction leads to the conclusion that
such vertices x and y cannot exist and thus C is dominating.

Let B be a connected bipartite induced subgraph of a graph G with at least 3 vertices. We
say that the vertices in one part of B are odd and those in the other part are even. If two
vertices are in the same part of B, we say they have the same parity. The following lemma is
an easy observation.

Lemma 10. Suppose a graph G has a connected bipartite induced subgraph B, |V (B)| ≥ 3, and
that for every vertex x 6∈ B, x is either complete or anticomplete to the odd vertices in B and
is either complete or anticomplete to the even vertices in B. Then all vertices of B except any
two adjacent vertices can be deleted from G and the new graph has a 3-colouring if and only if
G does.

Lemma 11. Let G be a connected (K3, S1,2,3, S1,1,2 + P2)-free graph containing an induced
cycle C of even length k ≥ 8. If a vertex x has a neighbour on the cycle, then x is adjacent to
all vertices of the same parity with respect to C.

Proof. Let x be adjacent to a vertex vi on the cycle. Then obviously it is adjacent to neither
vi−1 nor vi+1, since the graph is K3-free. If it is also non-adjacent to vi−2, then the subgraph of
G induced by vi, vi+1, vi−1, vi−2, x, vi+3, vi+4 is either isomorphic to S1,2,3 (if x has a neighbour
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in {vi+3, vi+4}) or to S1,1,2+P2 (if x has no neighbour in {vi+3, vi+4}). Therefore, x is adjacent
to vi−2. Since vertex vi was chosen arbitrarily, x must be adjacent to all vertices which have
the same parity as vi.

Notice that we may assume that G satisfies the following property:

(*) for any two non-adjacent vertices u and v, there exists a neighbour of u which is non-
adjacent to v and there exists a neighbour of v which is non-adjacent to u.

Indeed if a pair of vertices does not satisfy Property (*), then the neighbourhood of one of
the vertices u, v is included in the neighbourhood of the other. In this case the first vertex can
be deleted from the graph G and it is easy to see that the new graph has a 3-colouring if and
only if the original graph does.

Lemma 12. Let G be a (K3, S1,2,3, S1,1,2 + P2)-free graph with Property (*) and let P a be an
induced path in G with at least 8 vertices. If a vertex x is adjacent to a vertex of degree 2 in
P , then x is adjacent to all vertices of the same parity in P .

Proof. Let P be the path v1 − v2 − · · · − vk with k ≥ 8. Suppose, for contradiction that x has
a neighbour vi with 2 < i ≤ k − 1, such that x is not adjacent to vi−2 (the case where x is not
adjacent to vi+2 is symmetric). Clearly x cannot be adjacent to vi−1 or vi+1 since G is K3-free.

If i < k − 3, then G[vi, x, vi+1, vi−1, vi−2, vi+3, vi+4] is either isomorphic to S1,2,3 (if x has
a neighbour in {vi+3, vi+4}) or to S1,1,2 + P2 (if x has no neighbour in {vi+3, vi+4}). Thus we
may assume i ≥ k − 3.

But now if k ≥ 9 or k = 8, i ≥ k − 2, then G[vi, x, vi+1, vi−1, vi−2, vi−4, vi−5] is either
isomorphic to S1,2,3 (if x has a neighbour in {vi−5, vi−4}) or to S1,1,2+P2 (if x has no neighbour
in {vi−5, vi−4}). This contradiction proves that if k ≥ 9 or k = 8, i 6= k − 3, then x must be
adjacent to vi−2.

Now let us analyse the case when k = 8 and i = k − 3 = 5. By the above argument for
k = 8, i = 3, we conclude that x is adjacent to v7. Since G satisfies Property (*), vertex v6
must have a neighbour y which is non-adjacent to x. From the first part of the proof, we
know that y must be adjacent to v8 and v4 and therefore to v2. But x cannot be adjacent to
v2, since then it would have to be adjacent to v4, contradicting the fact that G is K3-free. If
x is adjacent to v1, then G[y, v6, v8, v4, v3, v1, x] is an S1,1,2 + P2. If x is non-adjacent to v1,
then G[y, v4, v2, v1, v6, v7, x] is an S1,2,3. This final contradiction completes the proof of the
lemma.

We may also assume that G satisfies the following property (otherwise we can apply Lemma
10):

(**) For any induced path P in G on 6 or 7 vertices, there is a vertex x ∈ V (G) \ V (P ) which
has both a neighbour and a non-neighbour of the same parity in P .

Let G denote the subclass of (K3, S1,2,3, S1,1,2 + P2, C7, C8, P8)-free graphs with Properties
(*) and (**).

Lemma 13. Any connected graph G ∈ G containing an induced P6 has chromatic number at
most 3 and a 3-colouring of G can be found in polynomial time.

Proof. Let Q denote the graph obtained from a C6 by adding a vertex which has exactly one
neighbour on the cycle. We split the proof into two cases.
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Figure 2: The graph Q.

Case 1 : G contains an induced subgraph isomorphic to Q. Say Q is induced by vertices
a, b, c, d, e, f, g ∈ V (G) where a− b−c−d−e−f −a is a chordless cycle and the only neighbour
of g on the cycle is e. The vertices of G outside the set {a, b, c} can be partitioned into at most
5 non-empty subsets in the following way:

Va is the set of vertices adjacent to a and non-adjacent to b and c,

Vb and Vc are defined by analogy with Va,

Vac is the set of vertices adjacent to a and c and non-adjacent to b,

W is the set of vertices anticomplete to {a, b, c}.

Note that Va, Vb, Vc and Vac are independent sets, since G is K3-free. We will split W into
independent sets. We will investigate the possible edges between all these independent sets and
finally, we will show how to obtain a 3-colouring of G.

(i) For any edge uv in G[W \ {e, g}], at least one of u, v has a neighbour in {e, g}. Suppose
not. Then since G[e, d, g, f, a, u, v] cannot be isomorphic to S1,1,2 + P2, it follows that at
least one of u, v is adjacent to one of d, f . Without loss of generality, we may assume that
u is adjacent to f . But then G[f, u, e, g, a, b, c] would be an S1,2,3, a contradiction.

We may now partition W into two sets W0 and W1, where G[W1] is the connected compo-
nent of G[W ] containing e and g. Notice that W0 = W \W1 is an independent set (by (i)).

(ii) For every edge uv in G[W1], exactly one of u, v has a neighbour in {d, f}. This is trivially
true for every edge incident to e. Now consider an edge ug in G[W1], where u 6= e.
Notice that g is non-adjacent to d, f . If u is non-adjacent to d, f , then G[e, f, g, u, d, c, b]
is isomorphic to S1,2,3, a contradiction. Thus u is adjacent to at least one of d, f . Now
consider an edge uv in G[W1] such that u, v 6= e, g. Since G is (K3, C7)-free, at most one
of u, v can have a neighbour in {d, f}. Suppose that u, v are non-adjacent to d, f . From
the previous case, we may assume that u, v are non-adjacent to g. It follows from (i) that
one of u, v is adjacent to e. Without loss of generality we may assume that u is adjacent
to e. But then G[e, g, u, v, f, a, b] would be isomorphic to S1,2,3, which is a contradiction.

(iii) G[W1] is complete bipartite. First let us show that every vertex u ∈ W1 \{e, g} is adjacent
to exactly one of e, g. Clearly no vertex can be adjacent to both e and g since G is K3-
free. Now let u ∈ W1 \ {e, g} and suppose that u is non-adjacent to e, g. If u is adjacent
to f (resp. d) then G[f, u, e, g, a, b, c] (resp. G[d, u, e, g, c, b, a]) is isomorphic to S1,2,3, a
contradiction. Now let v be a neighbour of u in W1. It follows from (ii) that v is adjacent
to at least one of d, f . We may assume that v is adjacent to f . But now G[f, e, v, u, a, b, c]
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is isomorphic to S1,2,3, a contradiction. Thus every vertex u ∈ W1 \ {e, g} is indeed
adjacent to exactly one of e, g. Let W1(g) be the vertices in W1 which are adjacent to e

and let W1(e) be the vertices adjacent to g. Notice that e ∈ W1(e) and g ∈ W1(g). Now
we only need to show that W1(e) is complete to W1(g). Suppose not. Let w ∈ W1(g) and
w′ ∈ W1(e) be non-adjacent. Since g is non-adjacent to d, f , it follows from (ii) that w′

is adjacent to at least one of d, f . Without loss of generality we may assume that w′ is
adjacent to f . But now G[f, w′, e, w, a, b, c] is isomorphic to S1,2,3, a contradiction.

Notice that since e is adjacent to d, f , (ii) implies that W1(g) must be anticomplete to {d, f}
and that every vertex in W1(e) is adjacent to at least one of d, f .

(iv) Let v ∈ Va ∪ Vc with v 6= d, f . Then for every edge ww′ in G[W1], exactly one of w,w′ is
adjacent to v. Suppose not. Without loss of generality, assume v ∈ Vc, w ∈ W1(e) and
w′ ∈ W1(g). But then G[c, v, b, a, d, w,w′] is isomorphic to S1,2,3 (if dw ∈ E(G)) or to
S1,1,2 + P2 (if dw 6∈ E(G)), which is a contradiction.

(v) There exist no two vertices u, v ∈ W1(e) such that uf, vd ∈ E(G) and ud, vf 6∈ E(G).
Suppose, for contradiction, that such two vertices exist. Notice that u, v 6= e. But then
G[d, v, c, b, e, f, u] is isomorphic to S1,2,3, a contradiction.

Thus either d or f is complete to W1(e). Without loss of generality, we may assume f is
complete to W1(e). Then by (iii) and (iv) it follows that we may partition Va into Va = V 1

a ∪V 2
a

such that V 1
a is complete to W1(e) and anticomplete to W1(g) and V 2

a is complete to W1(g)
and anticomplete to W1(e). From (iii) and (iv) it also follows that we may partition Vc into
Vc = V 1

c ∪ V 2
c such that every vertex in V 1

c has a neighbour in W1(e) and is anticomplete to
W1(g) and every vertex in V 2

c has a neighbour in W1(g) and is anticomplete to W1(e). Since G

is K3-free, V
1
a must be anticomplete to V 1

c and V 2
a must be anticomplete to V 2

c .

(vi) W0 is anticomplete to Va ∪Vc. Let u ∈ W0 and suppose that u is adjacent to some vertex
v in Va ∪Vc. Consider an edge ww′ in G[W1]. It follows from (iv) that exactly one vertex
of w,w′ is adjacent to v. We may assume without loss of generality that w is adjacent to
v. But now G[v, u, w,w′, a, b, c] is isomorphic to S1,2,3, a contradiction.

(vii) W1(g) and W0 have no common neighbours in Vac. Suppose that w ∈ W1(g) and u ∈ W0

have a common neighbour v ∈ Vac. Since G is K3-free, e is non-adjacent to v. But then
G[v, u, a, b, w, e, d] is isomorphic to S1,2,3, a contradiction.

Let X denote the subset of vertices of Vac that have a neighbour in W1(g) and let Y denote
the remaining vertices of Vac. Notice that X is anticomplete to W1(e) since G is K3-free. From
the above and the fact that G is K3-free, we conclude that each of the following three sets is
independent: V 2

a ∪ V 2
c ∪W1(e) ∪W0 ∪ {b} ∪X, V 1

a ∪ V 1
c ∪W1(g) ∪ Y , Vb ∪ {a, c}. Therefore G

is 3-colourable and such a colouring can be found in polynomial time.

Case 2 : G contains no induced subgraph isomorphic to Q. Suppose that the vertices
a, b, c, d, e, f induce a P6 with edges {ab, bc, cd, de, ef} (we know that G contains an induced
P6). The vertices outside the set {b, c, d, e} can be partitioned into at most 8 non-empty sets
as follows:

Vb is the set of vertices adjacent to b and non-adjacent to c, d, e,

15



Vc, Vd, Ve are defined by analogy with Vb,

Vbd is the set of vertices adjacent to b and d and non-adjacent to c and e,

Vce and Vbe are defined by analogy with Vbd,

W is the set of vertices anticomplete to {b, c, d, e}.

(i) Vb is anticomplete to Ve. Note that a ∈ Vb and f ∈ Ve. We know that af 6∈ E(G).
Suppose a has a neighbour u ∈ Ve \ {f}. Then G[a, b, c, d, e, u, f ] is isomorphic to Q,
a contradiction. Therefore a is anticomplete to Ve. Now suppose that there exist two
adjacent vertices u ∈ Vb \ {a}, v ∈ Ve. Then G[b, c, d, e, v, u, a] is isomorphic to Q. This
contradiction shows that Vb is anticomplete to Ve.

(ii) Every vertex in W is either complete to Vb (resp. Ve) or anticomplete to Vb (resp. Ve).
Suppose there exists a vertex w ∈ W which is adjacent to some vertex u ∈ Vb and non-
adjacent to some other vertex v ∈ Vb. Then G[b, v, u, w, c, d, e] is isomorphic to S1,2,3, a
contradiction. Thus the claim holds for Vb and by symmetry we conclude that it holds
for Ve as well.

(iii) No vertex in W is complete to both Vb and Ve. Suppose a vertex w ∈ W is complete to
Vb ∪ Ve. Then G[a, b, c, d, e, f, w] is isomorphic to C7, a contradiction.

It follows from the above that we may partition W into three sets Wb,We,W0, where Wb is
complete to Vb and anticomplete to Ve, We is complete to Ve and anticomplete to Vb, and W0

is anticomplete to Vb ∪ Ve. Notice that Wb and We are both independent sets.

(iv) At most one of Wb,We is nonempty. Indeed if both Wb and We are nonempty, say u ∈ Wb

and v ∈ We, then G[u, a, b, c, d, e, f, v] is either isomorphic to C8 or P8, a contradiction.

It follows from (iv) that we may assume without loss of generality that We = ∅. Thus W

is anticomplete to Ve. Furthermore, |Wb| ≤ 1, since if u, v ∈ Wb, then G[a, u, v, b, c, e, f ] is
isomorphic to S1,1,2 + P2, a contradiction.

(v) W is an independent set. SupposeW contains an edge uv and that u ∈ Wb. Since G isK3-
free, it follows that v is non-adjacent to a. But now G[v, u, a, b, c, d, e, f ] is isomorphic to
P8. This contradiction shows that neither u nor v has neighbours in Vb, hence u, v ∈ W0.

We let P denote either the induced path P6 = {ab, bc, cd, de, ef} (if Wb = ∅) or the
induced path P7 = {ya, ab, bc, cd, de, ef} (if Wb = {y}). We label the vertices of P by
natural numbers 1, 2, . . . , 6 or 1, 2, . . . , 7 and let k be the number of vertices in P .

Suppose a vertex z outside P has a neighbour in P . Then it must be adjacent to a vertex
i of degree 2 in P . Note that W0 and P are anticomplete, so z 6= u, v.

This implies that z is adjacent to i−2 (if i > 2), since otherwise G[i, i+1, i−1, i−2, z, u, v]
induces either an S1,2,3 (if z has a neighbour in {u, v}) or an S1,1,2 + P2 (if z has no
neighbour in {u, v}). Similarly z must be adjacent to i + 2 if i < k − 1. As a result z is
adjacent to all vertices of the same parity in P . Therefore, if W is not an independent set,
then G does not have Property (**). This contradiction implies that W is an independent
set.

(vi) Wb is anticomplete to Vd. Let Wb = {y}. Suppose that y is adjacent to u ∈ Vd. Then
G[a, b, c, d, u, y, e] is isomorphic to Q, a contradiction.
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(vii) W0 is anticomplete to Vc∪Vd. By symmetry it is enough to show that W0 is anticomplete
to Vc. Suppose that a vertex w ∈ W0 is adjacent to some vertex u ∈ Vc. Then u must be
adjacent to f otherwise G[c, b, u, w, d, e, f ] would be isomorphic to S1,2,3, a contradiction.
Now we claim that u is adjacent to a. Suppose not, then G[u,w, f, e, c, b, a] would be
isomorphic to S1,2,3, a contradiction. But now G[u,w, a, b, f, e, d] is isomorphic to S1,2,3,
a contradiction.

(viii) One of Wb, Vbe is empty. Indeed, suppose Wb = {y} and u ∈ Vbe. If y is non-adjacent to
u then G[b, c, a, y, u, e, f ] is isomorphic to S1,2,3, a contradiction. On the other hand, if y
is adjacent to u, then G[e, f, d, c, u, y, a] is isomorphic to S1,2,3, a contradiction.

(ix) If Wb = ∅, then G is 3-colourable. First, suppose that W0 is anticomplete to Vbe. Then it
is easy to see that the following are independent sets: W0∪Vb∪Ve∪Vbe∪{c}, Vbd∪Vd∪{e},
{b, d} ∪ Vce ∪ Vc. So we may now assume that there exists a vertex w ∈ W0 which has a
neighbour v ∈ Vbe. We claim that v must be complete to Vc ∪ Vd. Suppose that v is non-
adjacent to some vertex u ∈ Vc. Then f is adjacent to u, since otherwise G[v, w, e, f, b, c, u]
would be isomorphic to S1,2,3, a contradiction. But now G[c, d, u, f, b, v, w] is isomorphic
to S1,2,3, a contradiction. Thus v is complete to Vc and by symmetry we conclude that v
is complete to Vd as well. Hence Vc and Vd are anticomplete. Now we obtain a 3-colouring
as follows: Vb ∪ Vbe ∪ Vbd ∪ {c}, {b, e} ∪ Vc ∪ Vd ∪W0, {d} ∪ Ve ∪ Vce.

It follows from (ix) that we may now assume that Wb = {y} and hence Vbe = ∅. We
claim that Ve is complete to Vd. Suppose some vertex u ∈ Vd is non-adjacent to some vertex
v ∈ Ve. Then u must be adjacent to a, otherwise G[d, u, e, v, c, b, a] is isomorphic to S1,2,3, a
contradiction. But now G[d, c, e, v, u, a, y] is isomorphic to S1,2,3, a contradiction. Thus Ve is
complete to Vd. This implies that Vb is anticomplete to Vd. Indeed if a vertex u ∈ Vb is adjacent
to some vertex v ∈ Vd, then G[u, y, b, c, v, f, e] is isomorphic to S1,2,3, a contradiction. Now we
obtain a 3-colouring as follows: Vb ∪ Vbd ∪ Vd ∪ {c, e}, {b, d} ∪ Ve ∪W , Vce ∪ Vc.

This completes the proof that any connected graph G ∈ G containing an induced P6 has
chromatic number at most 3. From the above, it is easy to see that a 3-colouring of G can be
found in polynomial time.

Theorem 4. The vertex colouring problem is solvable in polynomial time in the class of
(K3, S1,2,3, S1,1,2 + P2)-free graphs.

Proof. Since we can solve the problem component-wise in G, we may assume that G is con-
nected. It follows from Lemmas 2, 7, 8 and 9 that the problem reduces to 3-colourability
of (K3, S1,2,3, S1,1,2 + P2)-free graphs which contain no odd induced cycle of length at least
7. Also, we only need to consider graphs that satisfy Property (*). Lemmas 10, 11 and 12
further reduce the problem in polynomial time to those graphs that contain no induced paths
or induced even cycles of length at least 8. The reduction is as follows:

• Check if G contains a P8 or C8. If G contains a C8 apply Lemmas 10 and 11. If G

contains a P8 extend it to a maximal (with respect to set inclusion) induced path P . This
can obviously be done in polynomial time. If there is a vertex which creates a cycle with
P , by Lemma 11, we can apply Lemma 10. Otherwise, every vertex of G which has a
neighbour on P must be adjacent to a vertex of degree 2 in P , in which case Lemma 12
tells us we can apply Lemma 10.

The above procedure further reduces the problem to 3-colourability of (K3, S1,2,3, S1,1,2+
P2)-free graphs with Property (*) that are (C7, C8, P8)-free. Finally, if G does not satisfy
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Property (**), we can find a suitable path on 6 or 7 vertices and apply Lemma 10. We may
therefore assume G satisfies Property (**).

Note that all of the above reductions work in polynomial time and either solve the 3-
colourability problem or delete vertices from the graph, so at most |V (G)| such reductions
can be applied. We may now assume that G is a connected (K3, S1,2,3, S1,1,2 + P2, C7, C8, P8)-
free graph satisfying Properties (*) and (**), i.e. G ∈ G.

Now if G is P6-free, we can solve the 3-colourability problem in polynomial time by
Theorem 1 and if G is not P6-free, we can solve the problem in polynomial time using Lemma
13. This completes the proof.

6. Further results

In this section we prove a few additional results. The first two results deal with graph classes
Free(K3, F ) where F is a “big” forest of simple structure.

Theorem 5. For every fixed m, the vertex colouring problem is polynomial-time solvable
in the class Free(K3,mK2).

Proof. Obviously, if a graph G is k-colourable, then it admits a k-colouring in which one of the
colour classes is a maximal independent set.

It is known that for every fixed m the number of maximal independent sets in the class
Free(mK2) is bounded by a polynomial [1] and all of them can be found in polynomial time
[37]. Therefore, given a mK2-free graph G, we can solve the 3-colourability problem for
G by generating all maximal independent sets and solving 2-colourability for the remain-
ing vertices of the graph. Then by induction on k, we conclude that for any fixed k the
k-colourability problem can be solved in the class Free(mK2) in polynomial time. Since
the chromatic number of (K3,mK2)-free graphs is bounded by 2m− 2 (see e.g. [3]), the ver-

tex colouring problem is polynomial-time solvable in the class Free(K3,mK2) for any fixed
m.

Theorem 6. For every fixed m, the vertex colouring problem is polynomial-time solvable
in the class Free(K3, P3 +mK1).

Proof. To prove the theorem, we will show that for any fixedm, graphs in the class Free(K3, P3+
mK1) are either bounded in size, or they are 3-colourable and a 3-colouring can be found in
polynomial time.

Let G be a (K3, P3 + mK1)-free graph. We start by finding a maximum independent set
in G. For each fixed m, this problem is solvable in polynomial time, which can easily be seen
by induction on m. Let S be a maximum independent set in G. Let R denote the remaining
vertices of G, i.e. R = V (G) − S. We may assume that R contains an induced odd cycle
C = v1 − v2 − · · · − vp − v1 with p ≥ 5. Since S is a maximum independent set, each vertex
of C has at least one neighbour in S. Let us call a vertex vi ∈ V (C) strong if it has at least
2 neighbours in S and weak otherwise. Since C is an odd cycle, it has either two consecutive
weak vertices or two consecutive strong vertices.

If C has two consecutive weak vertices, say v1, v2, then jointly they are adjacent to two
vertices of S, say v1 is adjacent to s1, and v2 is adjacent to s2, and therefore, they have |S| − 2
common non-neighbours in S. If |S| − 2 ≥ m, then s1, v1, v2 together with m vertices in
S \{s1, s2} induce a subgraph isomorphic to P3+mK1, a contradiction. Therefore |S| < m+2.
But then the number of vertices in G is bounded by the Ramsey number R(3,m+ 2), since G

is K3-free and contains no independent set of size m+ 2.
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Now suppose C has two consecutive strong vertices, say v1, v2. Since the graph is (P3+mK1)-
free, every strong vertex has at most m−1 non-neighbours in S, and since the graph is K3-free,
consecutive vertices of C cannot have common neighbours. Therefore each of v1 and v2 has at
most m− 1 neighbours in S. But then |S| < 2m− 1 and hence the number of vertices of G is
bounded by the Ramsey number R(3, 2m− 1) by the same argument as before.

Thus, if R has an odd cycle, then the number of vertices in G is bounded by a constant. If
R has no odd cycles, then G[R] is bipartite, and hence G is 3-colourable. Finding a maximum
independent set in a (P3 +mK1)-free graph can be done in polynomial time, so any (K3, P3 +
mK1)-free graph is either bounded in size, or can be 3-coloured in this way in polynomial time.
Thus vertex colouring of (K3, P3+mK1)-free graphs can be solved in polynomial time.

We conclude the paper with an alternative proof of the fact that every (K3, H)-free graph
is 3-colourable which is much shorter than the original proof in [30].

Theorem 7. Every (K3, H)-free graph is 3-colourable and a 3-colouring can be found in poly-
nomial time.

Proof. Let G be a (K3, H)-free graph and S be any maximal (with respect to set inclusion)
independent set in G. We assume that S admits no augmenting K1,2 (i.e. a triple x, y, z such
that x and y are non-adjacent vertices outside S with N(x)∩S = N(y)∩S = {z}), since finding
an augmenting K1,2 can be done in polynomial time. (If such an augmenting K1,2 exists, we
can just replace S by {x, y} ∪ S \ {z}, which increases the size of S.)

Assume that the graph G[V \S] is not bipartite, and let vertices x1, . . . , xk induce a cycle C
of odd length k ≥ 5 in G[V \ S] . By maximality of S, every vertex outside S has a neighbour
in S.

Suppose that each vertex of C has exactly one neighbour in S, and let y2 ∈ S and y3 ∈ S

be the neighbours of x2 and x3, respectively. Then x1, x2, x3, x4, y2, y3 induce a copy of the
graph H (by lack of triangles and augmenting K1,2s). Thus, C must contain vertices with at
least two neighbours in S. Assume without loss of generality that x2 is of this type. If C has
two consecutive vertices each of which has at least two neighbours in S, then an induced H

can be easily found. Therefore, each of x1 and x3 has exactly one neighbour in S. If y2 ∈ S is
a neighbour of x2 and y3 ∈ S is a neighbour of x3, then x4 is adjacent to y2, since otherwise
x1, x2, y2, x3, y3, x4 would induce a copy of H. Therefore, N(x2) ∩ S ⊆ N(x4) ∩ S, and by
symmetry, N(x4) ∩ S ⊆ N(x2) ∩ S, i.e. x2 and x4 have the same neighbourhood in S. This
in turn implies that x5 has exactly one neighbour in S. Continuing inductively, we conclude
that the even-indexed vertices of C have the same neighbourhood in S consisting of at least
two vertices, and each of the odd-indexed vertices of C has exactly one neighbour in S. But
then x1, x2, xk, xk−1, y1, yk induce a copy of the graph H, where y1 ∈ S and yk ∈ S are the
neighbours of x1 and xk, respectively.

7. Concluding remarks and open problems

In this paper we studied the complexity of the vertex colouring problem in subclasses of
triangle-free graphs obtained by forbidding forests and proved polynomial-time solvability of
the problem in many classes of this type. In particular our contribution, combined with some
previously known results listed in Table 1, provides a complete description of the complexity
status of the problem in subclasses of triangle-free graphs obtained by forbidding a forest with
at most 6 vertices (Tables 2 and 3 summarize results of this type obtained in the present paper).
Very little is known about the status of the problem in subclasses of triangle-free graphs defined
by forbidding forests with more than 6 vertices, and this creates a challenging research direction.
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Graph Graph Name Complexity Reference
b

b

b

b

b

b

P6 P Theorem 1
b

b

b

b

b

b

K1,3 + P2 P Theorem 3

b

b
b b b b S1,1,3 P Theorem 3

b

b

b

b

b

b

3P2 P Theorem 5

Table 3: Forests F on six vertices, none of which is isolated, for which the complexity of vertex colouring in
the class Free(K3, F ) is contributed in this paper.

One more natural direction of research is investigation of the problem in extensions of
triangle-free graphs. Let us observe that all results on triangle-free graphs can be extended,
with no extra work, to so-called paw-free graphs, where a paw is the graph obtained from a
triangle by adding a pendant edge. This follows from two facts: first, the problem can obviously
be reduced to connected graphs, and second, according to [28], a connected paw-free graph is
either complete multipartite (i.e. P 3-free), in which case the problem is trivial, or triangle-free.

Further extensions make the problem much harder. For instance, by adding a pendant
edge to each vertex of a triangle, we obtain a graph known in the literature as a net, and
according to [35] the problem is NP-hard even for (net, 2K2)-free graphs and (net, 4K1)-free
graphs. An interesting intermediate class between paw-free and net-free graphs is the class of
bull-free graphs, where a bull is the graph obtained by adding a pendant edge to two vertices of
a triangle. Recently, the class of bull-free graphs received much attention in the literature (see
e.g. [8, 9, 13, 23]). In particular, [8] provides a structural characterisation of bull-free graphs
which may be helpful in designing algorithms for various graph problems, including the vertex
colouring problem.
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