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Abstract

The maximum independent set problem is known to be NP-hard for graphs in general, but is solvable in

polynomial time for graphs in many special classes. It is also known that the problem is generally intractable

from a parameterized point of view. A simple Ramsey argument implies the fixed parameter tractability

of the maximum independent set problem in classes of graphs of bounded clique number. Beyond this

observation very little is known about the parameterized complexity of the problem in restricted graph

families. In the present paper we develop fpt-algorithms for graphs in some classes extending graphs of

bounded clique number.
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1 Introduction

We study simple undirected graphs without loops or multiple edges. In a graph, an independent set is a subset

of vertices no two of which are adjacent and a clique is a subset of pairwise adjacent vertices. The maximum

size of an independent set in a graph G is called the independence number of G and is denoted α(G), while the

maximum size of a clique is called the clique number of G and is denoted ω(G).

The maximum independent set problem is that of finding an independent set of maximum size in a given

graph. From a computational point of view this is a difficult problem, i.e. it is NP-hard. Moreover, it remains

NP-hard under substantial restrictions, for instance, for triangle-free graphs [21] and for planar cubic graphs [1].

On the other hand, in many special graph classes the problem admits polynomial-time algorithms, which is the

case for perfect graphs [13], claw-free graphs [19], and graphs of bounded clique-width [6].

A practical approach to deal with NP-hard problems is based on the notion of fixed-parameter tractability

(fpt), which is a relaxation of classical polynomial-time solvability. A parameterized problem is said to be

fixed-parameter tractable if it can be solved in time f(k)p(n) on instances of input size n, where f(k) is a

∗This paper combines and extends results presented at the 21st International Workshop on Combinatorial Algorithms
(IWOCA’10) and European Conference on Combinatorics, Graph Theory and Applications (EuroComb’09) and published as
extended abstracts in [7] and [16], respectively.
†Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP), EPSRC award EP/D063191/1.
‡This author gratefully acknowledges support from EPSRC, grant EP/I01795X/1.
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computable function depending only on the value of the parameter k and p(n) is a polynomial independent

of k. Unfortunately, the maximum independent set problem remains difficult even under this relaxation.

More formally, it is W[1]-hard [9]. However, for graphs in some restricted families the problem becomes fixed-

parameter tractable. In particular, this is true for graphs without large cliques, which follows from a simple

Ramsey argument (see e.g. [25]). This argument alone implies fixed-parameter tractability of the problem for

graphs of bounded degree, of bounded degeneracy, of bounded chromatic number, in all proper minor-closed

graph classes (which includes, in particular, classes of graphs excluding single-crossing graphs as minors [8]) and

all proper classes closed under taking subgraphs (not necessarily induced). Beyond this argument, very little

is known on the parameterized complexity of the problem in restricted graph families. Other classes where the

problem is known to be fixed-parameter tractable are the complements of t-multiple-interval graphs [11] and

segment intersection graphs with a bounded number of directions [15].

We develop fpt-algorithms that solve the maximum independent set problem in several new classes of

graphs, generalising some of the previously known results. In fact, our results apply to a natural generalisation

of the problem for weighted graphs. We say that a graph G is a weighted graph if each vertex of G is assigned a

real number ≥ 1, the weight of the vertex. The maximum weight independent set problem is that of finding

an independent set of maximum weight in a weighted graph, where the weight of a set of vertices is the sum of

the weights of its elements. This maximum weight is denoted αw(G). We study the following parameterization

of the maximum weight independent set problem:

Weighted Independent Set
Instance: A weighted graph G with weight function w : V (G)→ R and a positive real number

W .

Parameter: W .

Problem: Decide whether G has an independent set of weight at least W and find such a set

if it exists. If no such set exists, find an independent set of weight αw(G) instead.

All classes of graphs considered in this paper are hereditary, in the sense that for any graph G in such a class,

all induced subgraphs of G are also in the class. It is known that a class of graphs is hereditary if and only if

it can be characterised by a set of forbidden induced subgraphs. We say that a graph is M -free if it contains

no induced subgraphs from a set M of graphs. For a graph G, we denote the vertex set and the edge set of

G by V (G) and E(G), respectively. We denote the number of vertices of G by n. If v is a vertex of G, then

NG(v) is the neighbourhood of v in G and NG[v] = NG(v) ∪ {v} is the closed neighbourhood of v in G. For a

subset U ⊆ V (G), we let G[U ] be the subgraph of G induced by U . The complement of a graph G is denoted

G. We use R(r, s) to denote the Ramsey number, i.e. the minimum number n such that every graph with at

least n vertices has either an independent set of size r or a clique of size s. As usual, Kn, Cn, and Pn denote

the complete graph, the chordless cycle and the chordless path on n vertices, respectively. We denote the graph

obtained from Kn by deleting an edge by Kn− e and the disjoint union of r complete graphs of order 2 by rK2.

For a real number x, dxe denotes the smallest integer ≥ x.

2 (Kr − e)-free graphs

As we have noted above, a simple Ramsey argument implies the fixed-parameter tractability of maximum

independent set in Kr-free graphs. We first extend this result to the weighted case.

Theorem 1 For r ∈ N, the Weighted Independent Set problem is fixed-parameter tractable in the class of

Kr-free graphs.
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Proof: Let (G,W ) be an instance of the Weighted Independent Set problem, with G being a Kr-free graph

on n vertices. Since the weight of each vertex is ≥ 1, the weight of every independent set is at least its size.

Therefore, if G has at least R(dW e, r) vertices, then it necessarily has an independent set of size (and therefore

of weight) at least W . If the number of vertices of G is at least R(dW e, r), we can delete any n − R(dW e, r)
vertices from G, since the remaining graph still necessarily has an independent set of weight at least W . Now

the number of vertices of G is at most R(dW e, r), so the problem can be solved in time independent of n. This

clearly implies the fixed-parameter tractability of Weighted Independent Set for Kr-free graphs. 2

Since Kr−1 is an induced subgraph of Kr − e, our next result generalises Theorem 1.

Theorem 2 For r ∈ N, r ≥ 2, the Weighted Independent Set problem is fixed-parameter tractable in the

class of (Kr − e)-free graphs.

Proof: Let (G,W ) be an instance of the Weighted Independent Set problem, with G being a (Kr − e)-free

graph on n vertices. Let I be an independent set of G such that I is maximal with respect to set-inclusion and

there are no two non-adjacent vertices u and v in V (G) \ I for which (NG(u) ∪ NG(v)) contains exactly one

vertex of I, (i.e. I admits no so-called augmenting K1 or augmenting P3). Clearly, if one of these two conditions

fails, one can immediately construct a larger independent set. This implies that a set with these properties can

be found in time polynomial in n. Since the vertices of the graph have weights ≥ 1, if we find an independent

set of size ≥ W , then returning this set correctly solves Weighted Independent Set. Hence we suppose

|I| < W . (If this happens, the procedure actually solves the maximum weight independent set problem.)

We partition the vertices in V (G) \ I into classes according to their neighbourhood in I, i.e. two vertices

of V (G) \ I belong to the same class if and only if they have the same neighbours in I. A class is light if its

elements have exactly one neighbour in I and heavy otherwise.

By the choice of I, each light class is a clique and hence any independent set in G contains at most one

vertex from each of the |I| light classes. Furthermore, no vertex u from a light class has r − 2 neighbours in

another light class, since otherwise a Kr − e arises using u, some r − 2 neighbours of u in another light class,

and their unique neighbour in I.

Since G is (Kr − e)-free, every heavy class C induces a Kr−2-free graph, since otherwise a clique K of order

r − 2 in C together with two neighbours in I of the vertices in K would form a Kr − e. Hence, if some heavy

class contains at least R(dW e, r− 2) vertices, we can find an independent set of size at least W as explained in

the proof of Theorem 1. Therefore, we suppose that each heavy class contains less than R(dW e, r− 2) vertices,

which implies that the union H of I and all the heavy classes contains at most (W − 1) + 2WR(dW e, r − 2)

vertices, which is bounded in terms of W and r.

We can now proceed as follows:

Step 1: Generate all independent sets contained in H. Clearly, the number of such sets and the time needed

to generate all of them is bounded in terms of W and r. For each independent set IH found in this step, execute

Step 2.

Step 2: Let L denote the set of vertices u in light classes such that u has no neighbour in IH . Let L1 denote

the set of vertices in L that belong to light classes C with |C ∩L| < rdW e. Furthermore, let L2 ⊆ L contain the

rdW e vertices of largest weight (breaking ties arbitrarily) in C ∩ L for each light class C with |C ∩ L| ≥ rdW e.
Note that L1 ∪ L2 contains at most rdW e2 vertices, which is bounded in terms of W and r. Therefore, we can

determine an independent set IL ⊆ L1 ∪ L2 such that IH ∪ IL is of largest possible weight in time bounded in

terms of W and r.

Let J be an independent set of G with J ∩H = IH such that J has maximum possible weight and, subject

to this condition, J has largest possible intersection with IL. Let JL = J \ H. Since J ∩ H = IH and J is
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independent, we have JL = J ∩L. We claim that JL = IL. For contradiction, we assume that JL 6= IL. In this

case, the choice of IL and J implies that JL must contain a vertex x ∈ L \ (L1 ∪ L2). Note that x necessarily

belongs to a light class C with |C∩L| ≥ rdW e. Since there are less than W vertices in JL \{x} and every vertex

in a light class has less than r − 2 neighbours in C, the set C ∩ L2 contains a vertex x′ that is not adjacent

to any vertex in JL \ {x}. By the choice of L2, the weight of x′ is at least the weight of x. Therefore, the set

(J \ {x}) ∪ {x′} is independent, has at least the weight of J and a larger intersection with IL than J , which

contradicts the choice of J . This proves JL = IL, which means that the set IH ∪ IL found in the second step

is an independent of maximum weight intersecting H in IH . Since we execute the second step for all possible

choices of IH , returning a set of the form IH ∪ IL that is of largest possible weight correctly solves Weighted

Independent Set. Clearly, the running time of the sketched procedure is fr(W )p(n) where, for fixed r, fr(W )

is a computable function depending on W and p(n) is a polynomial independent of W . 2

Note that the polynomial p(n) above is independent of r as well as W , so the problem is fixed-parameter

tractable even if parameterized by both W and r.

3 Splittable graphs

In this section, we consider graphs that allow a certain type of decomposition; either of its vertex set or of its

edge set.

Definition 3 For r ∈ N and a graph G, a partition V (G) = X ∪Y of the vertex set of G is an r-split partition

of G if ω(G[X]) < r and α(G[Y ]) < r. If a graph G has an r-split partition, then G is an r-split graph.

The notion of r-split graphs generalises Kr-free graphs and many other important hereditary classes. To

see the importance of this notion, observe that for every hereditary class X (see e.g. [3]), there is a natural

number k (called the index for the class) such that the number Xn of n-vertex graphs (also known as the speed

of X) satisfies limn→∞
log2 Xn

(n
2)

= 1 − 1
k(X) , Furthermore, if E i,j denotes the class of graphs whose vertices can

be partitioned into at most i independent sets and j cliques, then the index k(X) of a class X is the maximum

k such that X contains a class E i,j with i+ j = k. In other words, the classes E i,j with i+ j = k are the only

minimal classes of index k. Therefore, any class X of index > 1 can be approximated by a minimal class E i,j

of the same index, in the sense that limn→∞
log2 Xn

Ei,jn
= 1. Clearly, E i,j is a subclass of max{i + 1, j + 1}-split

graphs.

Note that the class of split graphs (i.e. graphs partitionable into an independent set and a clique) is exactly

the class E1,1 and that the graphs in this class are precisely the 2-split graphs. Among various nice properties,

split graphs admit polynomial-time recognition. In the next lemma we show that this property extends to

r-split graphs for all values of r.

Lemma 4 For every r ∈ N, the class of r-split graphs can be recognised in polynomial time, and a certifying

r-split partition of the vertex set can be constructed within this time.

Proof: Let G = (V,E) be a graph and Y an arbitrary subset of its vertices with α(G[Y ]) < r. It is not difficult

to see that in polynomial time one can check if G contains a set Y ′ such that

(1) |Y \ Y ′| < R(r, r), α(G[Y ′]) < r and |Y ′| = |Y |+ 1.

As long as G admits such a set Y ′ replace Y with Y ′, i.e. set Y := Y ′. If no such set can be found, then check

if G contains a set Y ′ such that

(2) |Y \ Y ′| < R(r, r), |Y ′ \ Y | < R(r, r), α(G[Y ′]) < r and ω(G[V \ Y ′]) < r.
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If the answer is affirmative, then obviously G is an r-split graph and Y ′ ∪ (V \ Y ′) is a respective partition.

Otherwise, G is not an r-split graph. To see this, suppose for contradiction that G admits an r-split partition

V = X0 ∪ Y0 with ω(G[X0]) < r and α(G[Y0]) < r. By the choice of Y , the graph G[Y \ Y0] is Kr-free. Also,

since Y \ Y0 is a subset of X0, the graph G[Y \ Y0] is Kr-free. Therefore |Y \ Y0| < R(r, r). If additionally

|Y0 \Y | < R(r, r), then Y ′ = Y0 satisfies (2), contradicting our assumption. If |Y0 \Y | ≥ R(r, r), then |Y0| > |Y |
in which case a subset Y ′ ⊂ Y0 satisfying (1) can be found. A contradiction in both cases proves correctness

of the procedure. The polynomiality follows from the fact that r and R(r, r) are constants independent of the

number of vertices in G. 2

Now we proceed to algorithms that solve the Weighted Independent Set problem for r-split graphs. For

r = 2 the problem is known to be solvable in polynomial time, since it is a subclass of perfect graphs. However,

for large values of r the problem is NP-hard. In the next theorem we show that the problem is fixed-parameter

tractable in the class of r-split graphs for any value of r. Since Kr-free graphs are r-split graphs, our result

generalises Theorem 1.

Theorem 5 For r ∈ N, the Weighted Independent Set problem is fixed-parameter tractable in the class of

r-split graphs.

Proof: Let (G,W ) be an instance of the Weighted Independent Set problem with G an r-split graph. First,

we apply Lemma 4 in order to find a partition V (G) = X ∪ Y such that G[X] is Kr-free and G[Y ] is Kr-free.

This takes polynomial time. Since G[Y ] is Kr-free, the graph G[Y ] has only polynomially many independent

sets. For each such set IY of weight w(IY ), we solve the Weighted Independent Set problem for the instance

(G[X \NG(IY )],W −w(IY )) using Theorem 1, which yields a set IX(IY ). Returning an independent set of the

form IY ∪ IX(IY ) of maximum weight correctly solves Weighted Independent Set. 2

The notion of r-split graphs admits a further generalisation as follows:

Definition 6 Let r ∈ N and G be a hereditary class of graphs. A partition E(G) = E0 ∪ E1 of the edge set of

G is an (r,G)-split if G0 = (V,E0) is rK2-free and G1 = (V,E1) belongs to G. If a graph G has an (r,G)-split

partition, then G is an (r,G)-split graph.

It is not difficult to see that any r-split graph is (r, Free(Kr))-split, where Free(Kr) stands for the class

of Kr-free graphs. Indeed, let G = (V,E) be an r-split graph with an r-split partition V = X ∪ Y where

ω(G[X]) < r and α(G[Y ]) < r, and let E0 ∪E1 be a partition of E with E1 = E(G[X]) and E0 = E \E1. Then

obviously G1 = (V,E1) is Kr-free. To see that G0 = (V,E0) is rK2-free, observe that in this graph the set X is

independent and hence every edge contains at least one of its endpoints in the set Y , which means that if G0

would contain an induced rK2, then Y would contain an independent set of size r, which is impossible.

As we saw earlier, for any natural r, the class of r-split graphs enjoys the nice property that graphs in this

class can be recognised in polynomial time, which in turn implies fixed-parameter tractability of the Weighted

Independent Set problem in this class. This is obviously not true for general (r,G)-split graphs. However,

as we show below, if G is a class such that the problem is fixed-parameter tractable in it and an (r,G)-split

partition can be found in polynomial time for any (r,G)-split graph, then the problem is also fixed-parameter

tractable in the class of (r,G)-split graphs.

Theorem 7 Let r ∈ N and G be a hereditary class of graphs. If

• the Weighted Independent Set problem is fixed-parameter tractable in G, and

• an (r,G)-split partition can be found in polynomial time for any (r,G)-split graph,
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then the Weighted Independent Set problem is fixed-parameter tractable in the class of (r,G)-split graphs.

Proof: Given an instance (G,W ) of Weighted Independent Set with G being an (r,G)-split graph, we first

apply the polynomial time algorithm to find an (r,G)-split partition E(G) = E0 ∪E1 of the edge set of G such

that G0 = (V,E0) is rK2-free and G1 = (V,E1) belongs to G. Note that the rK2-free graph G0 only has a

polynomial number of maximal independent sets [2], which can all be generated in polynomial time [27], and

that a set of vertices is independent in G if and only if it is independent in G1 and a subset of some maximal

independent set of G0. Therefore, solving the Weighted Independent Set problem in G1[I0] for each of the

polynomially many maximal independent sets I0 of G0 and returning an independent set of maximum weight

obtained in this way, correctly solves Weighted Independent Set on the instance (G,W ). Since Weighted

Independent Set is fixed-parameter tractable in G, the desired result follows. 2

4 Beyond triangle-free graphs

In the search of further results, in this section we study extensions of triangle-free graphs, which is the simplest

nontrivial class of graphs of bounded clique number. We start by analysing H-free graphs, where H is a

one-vertex extension of a triangle.

Theorem 8 For each one-vertex extension H of a triangle, the Weighted Independent Set problem is fixed

parameter tractable in the class of H-free graphs.

Proof: It is not difficult to see that (up to isomorphism) there are four one-vertex extensions of a triangle: K4,

K4− e, K3 + e and K3 ∪K1, where K3 + e stands for a triangle plus a pendant edge (also known as a paw) and

K3 ∪K1 denotes the union of a triangle and an isolated vertex.

The fixed-parameter tractability of the problem in the classes of K4-free graphs and (K4 − e)-free graphs

follows from Theorems 1 and 2, respectively.

The structure of (K3 + e)-free graphs has been characterised in [22] as follows: A connected (K3 + e)-free

graph is either triangle-free or a complete multipartite graph (i.e. the complement of the disjoint union of

cliques). Together with the trivial observation that the Weighted Independent Set problem can be reduced

to connected graphs, this proves the theorem for (K3 + e)-free graphs.

Finally, to derive the same conclusion for (K3 ∪ K1)-free graphs, we invoke the obvious fact that a graph

G is (K3 ∪K1)-free if and only if G − NG[u] is K3-free for every vertex u ∈ V (G). Together with the trivial

identity

αw(G) = max
u∈V (G)

{ω(u) + αw(G−NG[u])},

the fixed-parameter tractability of the problem in the class of (K3∪K1)-free graphs follows from Theorem 1. 2

To further extend one of the classes covered by Theorem 8, we employ the notion of modular decomposition.

The idea of modular decomposition was first introduced in the 1960s by Gallai [12], and also appeared in

the literature under various other names such as prime tree decomposition [10], X-join decomposition [14], or

substitution decomposition [20], and this technique has previously been used to construct fpt-algorithms (see

e.g. [24]). To describe this idea, let us fix some terminology.

Given a graph G = (V,E), a subset of vertices U ⊆ V and a vertex x ∈ V outside U , we say that x

distinguishes U if x has both a neighbour and a non-neighbour in U . A subset U ⊆ V is called a module of G if

no vertex in V \ U distinguishes U . A module U is nontrivial if 1 < |U | < |V |, otherwise it is trivial. A graph

is called prime if it has only trivial modules.
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An important property of maximal modules is that if G and the complement of G are both connected, then

the maximal modules of G are pairwise disjoint. Moreover, from the above definition it follows that if U and

W are distinct maximal modules, then there are either no edges between them or every vertex in U is adjacent

to every vertex in W . Using these properties of maximal modules, we can find a maximum weight independent

set in G by

(1) reducing the problem to smaller instances if G or its complement are disconnected,

(2) recursively solving the problem in the subgraphs of G induced by maximal modules,

(3) contracting each maximal module M to a single vertex and assigning to it the weight αw(G[M ]), obtaining

in this way a new graph G0,

(4) solving the problem for the graph G0.

The graph G0 constructed in step 3 of the outlined procedure is prime. So, the procedure reduces the maximum

weight independent set problem for any hereditary class to prime graphs in the class. This reduction can

be implemented in polynomial time (see e.g. [18]). Let us show that this is also an fpt-reduction, i.e. it preserves

fixed-parameter tractability.

Theorem 9 Let X be a hereditary class of graphs and let X0 denote the class of prime graphs in X . If the

Weighted Independent Set problem is fixed-parameter tractable in X0, then it is fixed-parameter tractable

in X .

Proof: Let (G,W ) be an instance of the Weighted Independent Set problem with G ∈ X . Recall that

the modular decomposition tree T of G can be determined in linear time [5, 18] and that the set of leaves of T

equals the vertex set V of G. To each node v of T we associate the subgraph Gv of G induced by the leaves

of the subtree of T rooted at v. Processing the vertices of T in an order of non-increasing height, we will find

for each node v of T an independent set Iv of Gv such that the weight w(Iv) of Iv is at least min{W,αw(Gv)}.
If the weight of Iv is at least W , we stop the procedure and output Iv. Otherwise, we assign the independent

set Iv of weight αw(Gv) to the node v. The procedure starts by assigning the independent set Iv = {v} to each

leaf v of T . Now let v be an inner node of T .

If Gv is disconnected, then the children v1, v2, . . . , vl of v correspond to the connected components of Gv.

In this case, we let Iv = Iv1 ∪ Iv2 ∪ . . . ∪ Ivl .
If the complement of Gv is disconnected, then the children v1, v2, . . . , vl of v correspond to the connected com-

ponents of the complement of Gv. In this case we let Iv = Ivi , where w(Ivi) = max{w(Iv1), w(Iv2), . . . , w(Ivl)}.
Finally, if both Gv and its complement are connected, then the children v1, . . . , vl of v correspond to the

subgraphs of Gv induced by the maximal modules U1, U2, . . . , Ul of Gv, which partition the vertex set of Gv.

Let the graph G0
v arise from Gv by contracting each maximal module Ui of Gv into a single vertex denoted

i to which we assign the weight w(i) = w(Ivi). Since G0
v belongs to X0, there is an algorithm A that solves

Weighted Independent Set on the instance (G0
v,W ) in time f(W )lc ≤ f(W )nc, where c is a constant. If

I is the output of A, then let Iv =
⋃

i∈I Ivi . It is not difficult to see that the set assigned to the root of T

correctly solves Weighted Independent Set on the instance (G,W ). Since T has O(n) vertices, the overall

time complexity is at most f(W )nc+1. 2

Theorem 9 reduces the Weighted Independent Set problem from general graphs to prime graphs. The

corresponding result for the non-parameterized problem is well-known.

Now we apply Theorem 9 in order to develop an fpt-algorithm for the weighted independent set problem

in the class of {house, bull}-free graphs. The graphs house and bull are shown in Fig. 1. Observe that both
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these graphs contain K3 + e. Therefore, the class of {house, bull}-free graphs extends the class of (K3 + e)-free

graphs for which an fpt solution was shown in Theorem 8.

r
r

r
r

r







J
J
J

r
r

r
r

r







J
J
J

Figure 1: The house and the bull graphs

Theorem 10 The Weighted Independent Set problem is fixed-parameter tractable in the class of {house,
bull}-free graphs.

Proof: To prove the theorem, we use the following characterisation of {house, bull}-free graphs proposed in [23]:

Every prime {house, bull}-free graph is either triangle-free or the complement of a bipartite chain graph. (A

bipartite graph is a bipartite chain graph if the vertices in both parts of the bipartition are linearly ordered

by inclusion of neighbourhoods.) Obviously, for the complements of bipartite graphs, the maximum weight

independent set problem can be solved in polynomial time, since the size of any independent set in such

a graph is at most 2. Also, by Theorem 1, the Weighted Independent Set problem is fixed-parameter

tractable in the class of triangle-free graphs. Therefore, by Theorem 9, it is fixed-parameter tractable in the

class of {house, bull}-free graphs. 2

5 Concluding Remarks and Open Problems

In this paper, we obtain new results on the parameterized complexity of the weighted independent set

problem in hereditary classes of graphs. The new results together with some previously known results allow us

to conclude, in particular, that the problem is fixed-parameter tractable in all hereditary classes defined by a

single forbidden induced subgraph G with at most 4 vertices, except for G = C4. Finding the parameterized

complexity of the problem in the class of C4-free graphs is a challenging open problem. In addition to the

techniques studied in this paper, some other approaches may be useful for finding an answer to the above

question, such as graph transformations [17], separating cliques [4], and split decomposition [26].

There has recently been a lot of research on kernel sizes for fpt problems. The kernel sizes given by the

algorithms in this paper are quite large. Finding lower bounds for the kernel size is an interesting direction for

future research.
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[4] Brandstädt, A., Hoàng, C.T.: On clique separators, nearly chordal graphs, and the maximum weight stable

set problem. Theoret. Comput. Sci. 389 (1-2), 295–306 (2007)

[5] Corneil, D., Habib, M., Paul, C., Tedder, M.: Simpler linear-time modular decomposition via recursive

factorizing permutations. LNCS, vol. 5125, 634–645. Springer, Heidelberg (2008)

[6] Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded

clique-width. Theory Comput. Syst. 33 (2), 125–150 (2000)

[7] Dabrowski, K., Lozin, V., Müller, H., Rautenbach, D.: Parameterized Algorithms for the Independent Set

Problem in Some Hereditary Graph Classes. LNCS, vol. 6460, 1–9. Springer, Heidelberg (2011)

[8] Demaine, E.D., Hajiaghayi, M., Thilikos, D.M.: Exponential speedup of fixed-parameter algorithms for

classes of graphs excluding single-crossing graphs as minors. Algorithmica 41 (4), 245–267 (2005)

[9] Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science, Springer-

Verlag, New York, (1999)

[10] Ehrenfeucht, A., Rozenberg, G.: Primitivity is hereditary for 2-structures. Theoret. Comput. Sci. 70 (3),

343–358 (1990)

[11] Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-

interval graph problems. Theoret. Comput. Sci. 410 (1), 53–61 (2009)

[12] Gallai, T.: Transitiv orientierbare Graphen. Acta Math. Acad. Sci. Hungar. 18, 25–66 (1967)

[13] Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer,

Berlin (1988)

[14] Habib, M., Maurer, M.C.: On the X-join decomposition for undirected graphs. Discrete Appl. Math. 1 (3),

201–207 (1979)
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