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Abstract. A colouring of a graph G = (V,E) is a mapping c : V →
{1, 2, . . .} such that c(u) 6= c(v) if uv ∈ E; if |c(V )| ≤ k then c is a
k-colouring. The Colouring problem is that of testing whether a given
graph has a k-colouring for some given integer k. If a graph contains no
induced subgraph isomorphic to any graph in some family H, then it
is called H-free. The complexity of Colouring for H-free graphs with
|H| = 1 has been completely classified. When |H| = 2, the classifica-
tion is still wide open, although many partial results are known. We
continue this line of research and forbid induced subgraphs {H1, H2},
where we allow H1 to have a single edge and H2 to have a single non-
edge. Instead of showing only polynomial-time solvability, we prove that
Colouring on such graphs is fixed-parameter tractable when parame-
terized by |H1|+ |H2|. As a by-product, we obtain the same result both
for the problem of determining a maximum independent set and for the
problem of determining a maximum clique.

1 Introduction

Graph colouring involves the labelling of the vertices of some given graph by
integers called colours such that no two adjacent vertices receive the same colour.
The Colouring problem is that of deciding whether or not a graph can be
coloured with at most k colours for some given integer k. Because Colouring
is NP-complete for any fixed k ≥ 3, its computational complexity has been
widely studied for special graph classes, see for example the surveys of Randerath
and Schiermeyer [35] and Tuza [37]. In this paper, we consider the Colouring
problem for graphs characterized by two forbidden induced subgraphs. Before
we summarize related results and explain our new results, we first state the
necessary terminology.
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(JP100692), ERC (267959) and ANR (TODO ANR-09-EMER-010). An extended
abstract of the paper appeared in the proceedings of WG 2013 [9].



1.1 Basic Terminology

We only consider finite undirected graphs without loops or multiple edges. We
refer to the textbook of Diestel [12] for any undefined graph terminology. Let
G = (V,E) be a graph. A colouring ofG is a mapping c : V → {1, 2, . . .} such that
c(u) 6= c(v) whenever uv ∈ E. We call c(u) the colour of u and {u ∈ V | c(u) = i}
for some i ≥ 1 a colour class of c. A k-colouring of G is a colouring c of G with
1 ≤ c(u) ≤ k for all u ∈ V . The smallest integer k for which G has a k-colouring
is called the chromatic number of G, denoted χ(G); a χ(G)-colouring is said
to be optimal. The k-Colouring problem is that of deciding whether a given
graph admits a k-colouring. Here, k is fixed, that is, not part of the input. If k
is part of the input, then we denote the problem as Colouring.

Let G = (V,E) be a graph. A graph H is an induced subgraph of G if H
can be obtained from G by deleting zero or more vertices. In this case we write
H ⊆i G. For a set S ⊆ V , we let G[S] = (S, {uv ∈ E | u, v ∈ S}) denote the
subgraph of G induced by S. Let {H1, . . . ,Hp} be a set of graphs. We say that
G is (H1, . . . ,Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . ,Hp}; if p = 1, we may write that G is H1-free instead of (H1)-free.

The complement of a graph G = (V,E), denoted by G, has vertex set V
and an edge between two distinct vertices if and only if these vertices are not
adjacent in G. The disjoint union of two graphs G and H with V (G)∩V (H) = ∅
is the graph with vertex set V (G) ∪ V (H) and edge set E(G) ∪ E(H), and we
denote this by G+H. We denote the disjoint union of r copies of G by rG.

For r ≥ 1, the graph Pr denotes the path on r vertices, that is, V (Pr) =
{u1, . . . , ur} and E(Pr) = {uiui+1 | 1 ≤ i ≤ r − 1}. Adding the edge u1ur to
this graph yields the cycle on r vertices, denoted Cr. The graph sP1 denotes the
independent set on s vertices.

The Independent Set problem is that of testing whether a given graph
has an independent set of size at least k for some given integer k. The graph
Kt denotes the complete graph on t vertices, that is, V (Kt) = {u1, . . . , ut} and
E(Kt) = {uiuj | 1 ≤ i < j ≤ t}. The vertex set of a complete graph is called
a clique. The Clique problem is that of testing whether a given graph has a
clique of size at least k for some integer k. The graph Kt − e denotes the graph
obtained from Kt after removing exactly one edge.

The clique-width of a graph G is the minimum number of labels needed to
construct G using the following four operations:

(i) Creating a new vertex v with label i (denoted by i(v)).

(ii) Taking the disjoint union of two labelled graphsG andH (denoted byG⊕H).

(iii) Joining each vertex with label i to each vertex with label j (i 6= j, denoted
by ηi,j).

(iv) Renaming label i to j (denoted by ρi→j).

An algebraic term that represents such a construction of G and that uses k labels
is called a k-expression of G (i.e. the clique-width of G is the minimum k for
which G has a k-expression). For instance, an induced path on five consecutive
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vertices a, b, c, d, e has clique-width equal to 3, and a 3-expression can be defined
as follows:

η3,2(3(e)⊕ ρ3→2(ρ2→1(η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕ η2,1(2(b)⊕ 1(a))))))))).

A class of graphs G has bounded clique-width if there is a constant c such that
the clique-width of every graph in G is at most c; otherwise the clique-width of
G is unbounded.

1.2 Our Results

We show fixed-parameter tractability results for three problems, namely for
Colouring, Independent Set and Clique, restricted to (sP1 + P2,Kt − e)-
free graphs. In parameterized complexity theory, the problem input consists of
a pair (I, p), where I is the problem instance and p is the parameter. A problem
is fixed-parameter tractable (fpt) with parameter p if it can be solved in time
f(p) · |I|O(1) for some function f that only depends on p. In our case, a natural
parameter is s + t. In Section 2 we show that Colouring is fixed-parameter
tractable with parameter s+ t when restricted to (sP1 +P2,Kt− e)-free graphs,
that is, can be solved in time f(s+ t)(n+ k)O(1) for some function f that only
depends on s+ t. In the same section, we show that the Independent Set and
Clique problems are also fixed-parameter tractable with parameter s+ t when
restricted to (sP1+P2,Kt−e)-free graphs. However, the main motivation for our
research comes from the area of graph colouring, as we explain in Section 1.3. In
Section 3 we give some directions for future research. There, we also show that
Colouring is polynomial-time solvable for (2P2,Kt − e)-free graphs.

Finally, it should be noted that many classes of (H1, H2)-free graphs are
known to have bounded clique-width (see Section 1.3). It is well known that
Colouring can be solved in polynomial time on any graph class of bounded
clique-width by combining the following two results. First, for any constant k,
the Colouring problem is polynomial-time solvable on any class of graphs that
have clique-width at most k provided that a k-expression is given [23]. Second,
a (23k+2− 1)-expression for any n-vertex graph with clique-width at most k can
be found in O(n9 log n) time [31]. However, the classes of (sP1 +P2,Kt− e)-free
graphs only have bounded clique-width for small values of s and t, as we show in
Section 4. Thus our results (which are also stronger than mere polynomial-time
solvability) do not fall into this category.

1.3 Motivation and Related Work

The complexity of Maximum Independent Set restricted to H-free graphs
has only been partially classified. For instance, the complexity status of this
problem on P5-free graphs was a notorious open case, which was only solved
recently [25]. Because a graph has an independent set of size at least k if and
only if its complement has a clique of size at least k, the complexity classification
of the Clique problem on H-free graphs is also far from being settled.
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Our research on the Colouring problem, which is the main focus of our
paper, is well embedded in the literature. As a starting point, Král’ et al. [24]
completely determined the computational complexity of Colouring for H-free
graphs.

Theorem 1 ([24]). Let H be a fixed graph. If H is a (not necessarily proper)
induced subgraph of P4 or of P1 +P3, then Colouring can be solved in polyno-
mial time for H-free graphs; otherwise it is NP-complete for H-free graphs.

Theorem 1 initiated a study of the computational complexity of the k-
Colouring problem on H-free graphs. This classification is still open (see the
paper of Golovach et al. [14] for a survey and the paper of Huang [21] for a num-
ber of additional results). Due to Theorem 1, the Colouring problem restricted
to graph classes characterized by two forbidden induced subgraphs has received
a significant amount of attention as well. We survey known results below.

We observe that Theorem 1 implies that Colouring is polynomial-time
solvable for (H1, H2)-free graphs if one of H1, H2 is an induced subgraph of P4

or of P1 + P3. Another straightforward case is as follows. For positive integers
s and t, the Ramsey number R(s, t) is the smallest number n such that all
graphs on n vertices contain an independent set of size s or a clique of size t.
Ramsey’s Theorem [32] states that such a number exists for all positive integers
s and t. As an immediate consequence, Colouring is polynomial-time solvable
on (sP1,Kt)-free graphs for all s and t. Hence, it is natural to consider graph
classes that can be obtained by adding one edge to the first forbidden induced
subgraph and removing one edge from the second. This leads to the class of
(sP1 +P2,Kt− e)-free graphs; note that this class includes all (sP1,Kt− e)-free
graphs and all (sP1+P2,Kt−1)-free graphs. As explained in Section 1.2, we have
an fpt algorithm with parameter s + t for solving the Colouring problem on
(sP1 +P2,Kt−e)-free graphs. This is also an fpt algorithm for (sP1,Kt−e)-free
graphs and (sP1 + P2,Kt)-free graphs, because any (sP1,Kt − e)-free graph is
(sP1 +P2,Kt−e)-free and any (sP1 +P2,Kt)-free graph is (sP1 +P2,Kt+1−e)-
free. Our result adds to the body of existing work on Colouring for (H1, H2)-
free graphs, which we further discuss below.

The following result, which we will use later on, is due to Gyárfás [17].

Theorem 2 ([17]). Let `, t ≥ 1 be two integers. Then every (P`,Kt)-free graph
can be coloured with at most (`− 1)t−2 colours.

Theorem 2 was slightly improved by Gravier, Hoáng and Maffray [16], who
showed that every (P`,Kt)-free graph that is not a complete graph can be
coloured with at most (`− 2)t−2 colours. Each of these two results implies that
Colouring is polynomial-time solvable on (F,Kt)-free graphs, whenever F is
the disjoint union of one or more paths such that k-Colouring is polynomial-
time solvable on F -free graphs for all k ≥ 1. Combining this observation with
such existing results for k-Colouring [7,11,19] gives us a number of polynomial-
time solvable cases [13].
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Also, the fact that Colouring can be solved in polynomial time on graphs
of bounded clique-width by combining the aforementioned results of Kobler and
Rotics [23] and Oum and Seymour [31] directly leads to polynomial-time results
for Colouring restricted to (K1,3, C3 +P1)-free graphs [1], (P1 +P4, P1 + P4)-
free graphs [3], (P5, P1 + P4)-free graphs [2] and (P1 + P4, P5)-free graphs [2].
Here, the graph K1,r denotes the graph with vertices u, v1, . . . , vr and edges
uv1, . . . , uvr.

More results on Colouring for (H1, H2)-free graphs can be found in a num-
ber of other papers [4,5,11,20,24,28,33,34,36], all of which are summarized in
Theorem 3 given below, together with the above results and a weaker formula-
tion of our new result (Statement (ii)-8). In this theorem, the graph C+

3 denotes
the paw, which is the graph with vertices a, b, c, d and edges ab, ac, ad, bc; the
graph C++

3 denotes the bull, which is the graph with vertices a, b, c, d, e and
edges ab, ac, ad, bc, be and the graph C∗3 denotes the hammer, which is the graph
with vertices a, b, c, d, e and edges ab, ac, ad, bc, de. For details we refer to Golo-
vach and Paulusma [13], who formulate a similar theorem to Theorem 3, but
without mentioning Statement (ii)-8 or four very recent results of Malyshev [30],
namely that 3-Colouring is NP-complete for (C++

3 ,K1,4)-free graphs, and that
Colouring is polynomial-time solvable for (P5, C4)-free graphs, (K1,3, P5)-free
graphs and (K1,3, C

∗
3 )-free graphs.

Theorem 3. Let H1 and H2 be two fixed graphs. Then the following holds:

(i) Colouring is NP-complete for (H1, H2)-free graphs if

1. H1 ⊇i Cr for some r ≥ 3 and H2 ⊇i Cs for some s ≥ 3
2. H1 ⊇i K1,3 and H2 ⊇i K1,3

3. H1 and H2 contain a spanning subgraph of 2P2 as an induced subgraph
4. H1 ⊇i C++

3 and H2 ⊇i K1,4

5. H1 ⊇i C3 and H2 ⊇i K1,r for some r ≥ 5
6. H1 ⊇i Cr for r ≥ 4 and H2 ⊇i K1,3

7. H1 ⊇i C3 and H2 ⊇i P164

8. H1 ⊇i Cr for r ≥ 5 and H2 contains a spanning subgraph of 2P2 as an
induced subgraph

9. H1 ⊇i Cr + P1 for 3 ≤ r ≤ 4 or H1 ⊇i Cr for r ≥ 6, and H2 contains a
spanning subgraph of 2P2 as an induced subgraph

10. H1 ⊇i K4 or H1 ⊇i K4 − e, and H2 ⊇i K1,3.

(ii) Colouring is polynomial-time solvable for (H1, H2)-free graphs if

1. H1 or H2 is an induced subgraph of P1 + P3 or of P4

2. H1 ⊆i K1,3, and H2 ⊆i C∗3 or H2 ⊆i P5

3. H1 6= K1,5 is a forest on at most six vertices and H2 ⊆i C+
3

4. H1 ⊆i sP2 or H1 ⊆i sP1 + P5 for s ≥ 1, and H2 ⊆i C+
3

5. H1 ⊆i sP2 or H1 ⊆i sP1 + P5 for s ≥ 1, and H2 = Kt for t ≥ 4
6. H1 ⊆i P1 + P4 or H1 ⊆i P5, and H2 ⊆i P1 + P4

7. H1 ⊆i P1 + P4 or H1 ⊆i 2P2, and H2 ⊆i P5

8. H1 ⊆i sP1 + P2 for s ≥ 0 or H1 = 2P2, and H2 ⊆i Kt − e for t ≥ 2
9. H1 ⊆i P5 and H2 ⊆i C4.
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We need some of the results listed in Theorem 3 for the proof of our result in
Section 3. The following result, which we will also use, is the only parameterized
result known for Colouring of H-free graphs. Recall that k is the number of
colours permitted.

Theorem 4 ([8]). The Colouring problem on (sP1 +P2)-free graphs is fixed-
parameter tractable with parameter k + s.

Very few parameterized results on Independent Set are known [10]. In
particular, we need the following one. Recall that k is the minimum number of
independent vertices required.

Theorem 5 ([10]). The Independent Set problem on (Kt− e)-free graphs is
fixed-parameter tractable with parameter k + t.

We remark that the running times of the algorithms of Theorems 4 and 5
are f(k+ s)nO(1) and g(k+ t)nO(1), respectively, with k in the exponent of both
f and g, whereas in our setting k is part of the input.

2 The Proofs of Our Results

In this section, we show that the Colouring, Independent Set and Clique
problems on (sP1 + P2,Kt − e)-free graphs are fixed-parameter tractable with
parameter s+ t. We need the following additional terminology.

Let G = (V,E) be a graph. Then N(u) = {v ∈ V | uv ∈ E} is the neighbour-
hood of u ∈ V . For S ⊆ V , we write N(S) = {v ∈ V \S | uv ∈ E for some u ∈ S}.
A subset M ⊆ E is a matching if no two edges in M share an end-vertex. A
matching M is A-saturating for some subset A ⊆ V if every vertex of A is an end-
vertex of some edge in M ; if M is V -saturating, then M is a perfect matching.
A graph is p-partite if its vertex set can be partitioned into at most p indepen-
dent sets, which we call partition classes. If p = 2, the graph is bipartite. The
complement of a p-partite graph is called a co-p-partite graph (whose partition
classes are cliques).

Before stating the proofs of our results, let us first give an outline. Because
a graph is (sP1 + P2,Kt − e)-free if and only if its complement is ((t − 2)P1 +
P2,Ks+2 − e)-free, the results for the Clique problem follow immediately from
those for the Independent Set problem. In Lemma 1 we show that every
(sP1 +P2,Kt−e)-free graph is ((s+1)P1,Kt−e)-free or (sP1 +P2,Ks2(t−3)+2)-
free. This enables us to do as follows. We first show our results for Colouring
and Independent Set on (sP1 + P2,Kt)-free graphs in Lemmas 2 and 3, re-
spectively, and on (sP1,Kt− e)-free graphs in Lemmas 8 and 4, respectively. To
prove these lemmas, we will use Theorems 2, 4 and 5. We also use Lemma 2 to
prove Lemma 3 and Lemma 4, along with some structural results (Lemmas 5–7)
to prove Lemma 8. We then combine our intermediate steps to prove Theorem 6,
in which we state our main results.

As noted, we start with Lemma 1.
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Lemma 1. Let G be a (sP1+P2,Kt−e)-free graph. Then G is ((s+1)P1,Kt−e)-
free or (sP1 + P2,Ks2(t−3)+2)-free.

Proof. Let G = (V,E) be a (sP1 +P2,Kt− e)-free graph. Suppose that G is not
(s+ 1)P1-free. We will show that G must then be Ks2(t−3)+2-free.

Because G is not (s+ 1)P1-free, G contains an independent set S on at least
s+ 1 vertices. We assume that S is maximal (with respect to set inclusion). Let
u1, . . . , up be the vertices of S for some p ≥ s + 1. Let X1 = N(u1), and for
i = 2, . . . , p, let Xi denote the set of vertices in V \ S that are adjacent to ui
but not to any vertex in {u1, . . . , ui−1}. By maximality of S, every vertex of G
is either in S or in some Xi.

We claim that Xi = ∅ for i ≥ s + 1. Indeed, if i ≥ s + 1 and x ∈ Xi then
G[{u1, . . . , us, x, ui}] would be isomorphic to sP1 + P2.

Now suppose that for some i, Xi contains a clique K on at least s(t − 3) +
1 vertices. If t − 2 vertices of K were adjacent to uj for some j 6= i, then
these t − 2 vertices, together with ui and uj , would induce a Kt − e in G.
Therefore, for each j 6= i, at most t − 3 vertices of K can be adjacent to uj .
Hence, there must be a vertex x ∈ K that is not adjacent to any vertex in
{u1, . . . , ui−1, ui+1, . . . , us+1}. However, then G[{u1, . . . , us+1, x}] is isomorphic
to sP1 + P2. This is a contradiction. Thus all sets X1, . . . , Xs can only contain
cliques of size at most s(t− 3). Because S is an independent set and Xi = ∅ for
i ≥ s+ 1, this means that the largest clique in G has size at most s2(t− 3) + 1.
We conclude that G is Ks2(t−3)+2-free, as desired. ut

We are now ready to prove Lemmas 2 and 3.

Lemma 2. The Colouring problem on (sP1 + P2,Kt)-free graphs is fixed-
parameter tractable with parameter s+ t.

Proof. We observe that every (sP1 + P2,Kt)-free graph is (P2s+2,Kt)-free, and
consequently can be coloured with at most (2s+1)t−2 colours due to Theorem 2.
Hence we can apply Theorem 4. In fact, Theorem 4 gives us an explicit optimal
colouring, rather than just the chromatic number. Hence, even the problem of
finding an optimal colouring in a (sP1 + P2,Kt)-free graph is fixed-parameter
tractable with parameter s+ t. ut

Lemma 3. The Independent Set problem on (sP1 + P2,Kt)-free graphs is
fixed-parameter tractable with parameter s+ t.

Proof. Let G be a (sP1 + P2,Kt)-free graph on n vertices. By (the proof of)
Lemma 2, we can find an optimal colouring c of G in fpt time with parameter
s + t. Because G is (P2s+2,Kt)-free, c uses k ≤ (2s + 1)t−2 colours due to
Theorem 2. Let C1, . . . , Ck be the colour classes of c. We may assume that C1

is a maximal independent set (with respect to set inclusion) in G, and that for
i = 2, . . . , k, the set Ci is a maximal independent set in G \ (C1 ∪ · · · ∪ Ci−1).
Indeed, if some x ∈ Ci has no neighbours in Cj for some j < i, we can move x
to Cj in order to obtain another optimal colouring of G.
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We branch by choosing an index b to be the largest index such that Cb
contains a vertex of the maximum independent set I that we are searching for.
There are at most (2s + 1)t−2 ways of doing this. We then branch further by
choosing a vertex x in Cb that we assume will be in I. This leads to at most n
branches altogether. By maximality, x has a neighbour in Ca for every a < b.
Let Ja be the set of vertices in Ca that are not adjacent to x. Because G is
(sP1 + P2)-free, Ja contains at most s − 1 vertices. Let Hx = J1 ∪ · · · ∪ Jb−1.
By the definition of the sets Ji and the choice of x, we find that I \ Hx ⊆ Cb.
We branch further by choosing an independent set I ′ ⊆ Hx. Because Hx has
size at most β = (b − 1)(s − 1) ≤ ((2s + 1)t−2 − 1)(s − 1), there are at most
2β ways of doing this. We then extend I ′ by adding all vertices of Cb that do
not have a neighbour in I ′. The final independent set is a candidate for being
a maximum independent set. After considering all independent sets obtained
in this way, we choose one that has maximum size. Because we considered all
possible ways of constructing a maximum independent set, the above algorithm
is correct. Because our algorithm constructs at most n2β independent sets, it
runs in fpt time when parameterized by s+ t. ut

Here is Lemma 4.

Lemma 4. The Independent Set problem on (sP1,Kt−e)-free graphs is fixed-
parameter tractable with parameter s+ t.

Proof. Because any independent set in an sP1-free graph has size at most s −
1, the result follows from Theorem 5. In fact, Theorem 5 gives us an explicit
independent set of maximum size, rather than just the size of such a set. Hence,
even the problem of finding a maximum independent set in a (sP1,Kt − e)-free
graph is fixed-parameter tractable with parameter s+ t. ut

To prove Lemma 8 we need three structural lemmas, the first of which is
well-known.

Lemma 5 (Hall’s Marriage Theorem [18]). A bipartite graph G with vertex
partition A ∪ B has an A-saturating matching if and only if |N(X)| ≥ |X| for
all X ⊆ A.

We need Lemma 5 to prove Lemma 6. Note that in a bipartite graph with
partition classes A and B an A-saturating matching is perfect if |A| = |B|.

Lemma 6. Let G be a bipartite graph with partition classes A and B. Let p, q,
n be integers such that |A| = |B| = n ≥ p+ q. If every vertex in A has degree at
least n − p and every vertex in B has degree at least n − q, then G contains a
perfect matching.

Proof. We use Lemma 5. Let X ⊆ A. If |X| = 0, then |N(X)| ≥ |X|. Suppose
1 ≤ |X| ≤ n − p. Let x ∈ X. Then |N(X)| ≥ |N(x)| ≥ n − p ≥ |X|. Suppose
|X| ≥ n−p+1. Then |X| ≥ n−p+1 ≥ q+1. As every vertex in B has at most q
non-neighbours in A, this means that N(X) = B. Hence, |N(X)| = n ≥ |X|. ut
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We need Lemma 6 to prove Lemma 7. Lemma 7 is a key lemma. It gives us a
sufficient condition on the number of edges that we may allow between mutually
vertex-disjoint cliques without increasing the chromatic number of their union.

Lemma 7. Let k, a, b be integers such that k ≥ 2a(b−1). Let G be a co-b-partite
graph with partition classes X1, . . . , Xb, all of size at most k. If every vertex in
Xi has at most a neighbours in Xj for all 1 ≤ i, j ≤ b when i 6= j, then G is
k-colourable.

Proof. Without loss of generality, we may assume that every clique Xi contains
exactly k vertices; if a clique Xi has less than k vertices, we add k − |Xi| new
vertices to Xi, whose only neighbours are the vertices in Xi.

We use induction on b. The case b = 1 is trivial. Let b ≥ 2. Let G′ =
G[X1 ∪ · · · ∪ Xb−1]. Because k ≥ 2a(b − 1) ≥ 2a(b − 2), we can apply our
induction hypothesis to find that G′ is k-colourable. Let c be a k-colouring of
G′, and let Xb = {x1, . . . , xk}. We construct an auxiliary bipartite graph F as
follows. For each colour 1 ≤ i ≤ k we create a vertex ui. This yields the set
U = {u1, . . . , uk}. For each vertex xj ∈ Xb we introduce a copy x′j . This yields
the set X = {x′1, . . . , x′k}. The partition classes of F are U and X. We add an
edge from ui to x′j in F if and only if c does not assign colour i to any neighbour
of xj . We observe that c can be extended to a k-colouring of G if and only if F
has a perfect matching. Hence, it remains to show that this is indeed the case.

Because every Xi is a clique of size k, every colour of c occurs b − 1 times.
Recall that we assume that every vertex in Xi has at most a neighbours in Xj

for all 1 ≤ i, j ≤ b, where i 6= j. By combining these two facts we find that
every ui has degree at least k − a(b − 1) and that every x′j has degree at least
k − a(b− 1). As k ≥ 2a(b− 1) = a(b− 1) + a(b− 1), we may apply Lemma 6 to
find that F has a perfect matching. ut

We are now ready to prove Lemma 8.

Lemma 8. The Colouring problem on (sP1,Kt − e)-free graphs is fixed-pa-
rameter tractable with parameter s+ t.

Proof. Let G be an (sP1,Kt − e)-free graph on n vertices. We may assume
without loss of generality that s ≥ 2 and t ≥ 3, as the proof is straightforward
for s ≤ 1 or t ≤ 2. We first find a maximum independent set S of G. According
to (the proof of) Lemma 4, we can do this in fpt time with parameter s+ t.

We may assume without loss of generality that S is of size s − 1; otherwise
G is ((s − 1)P1,Kt − e)-free. Let u1, . . . , us−1 be the vertices of S. For 1 ≤
i < j ≤ s − 1, let Xi,j be the set of vertices adjacent to both ui and uj . If
some Xi,j contains a clique on t − 2 vertices, then the vertices of this clique
together with ui, uj form an induced Kt − e. Hence, every Xi,j is (sP1,Kt−2)-
free. Recall that R(s, t) is the Ramsey number for integers s and t. Because Xi,j

is (sP1,Kt−2)-free, Xi,j contains at most R(s, t−2)−1 vertices. Let D =
⋃
Xi,j .

Then |D| ≤
(
s−1
2

)
(R(s, t−2)−1). Hence, the size of D is bounded by a function

of s and t.
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Let Xi consist of ui and those vertices that are adjacent to ui but not to any
other vertex in S. Each Xi must be a clique, since if x, y ∈ Xi were non-adjacent,
then {x, y} ∪ S \ {ui} would be an independent set larger than S, contradicting
the fact that S is a maximum independent set. Note that every vertex of G is
either in D or in some Xi (see Figure 1). Hence, we find that the vertices of G
can be partitioned into s − 1 cliques X1, . . . , Xs−1 and a set D. However, from
these s sets, we only know that D has bounded size (in terms of s and t).

Xi,j

u1 ui uj

X1 Xi Xj Xs−1

us−1

D

Fig. 1. Decomposition of the graph G into sets X1, . . . , Xs−1, D.

Now suppose that some vertex x ∈ Xi had t − 2 neighbours in Xj for some
j 6= i. Then these t − 2 neighbours, together with x and uj , would induce a
Kt − e in G. Hence, every vertex in Xi has at most t − 3 neighbours in every
Xj with j 6= i. Consequently, each vertex in Xi has at most (t− 3)(s− 1) + |D|
neighbours outside of Xi.

We now start a branching procedure by first colouring the vertices of D in
every possible way using colours from the set C = {1, . . . , |D|}. After colouring
D, for each i = 1, . . . , s − 1, we choose a subset Ci ⊆ C of size |Ci| ≤ |Xi|,
which we let consist of exactly those colours from C that will occur on Xi. We
branch over all possibilities for choosing such sets Ci. After choosing the sets Ci
we branch further. For all cliques Xi of size at most γ = (|D| + 2)(s − 2)(t −
3) + (t − 3)|D| + |D| (we explain this number later) we branch by trying every
possible way of colouring a subset of Xi of size |Ci| with the colours from Ci.
This yields a partial colouring of G. The total number of these partial colourings
is at most

|D||D|
s−1∏
i=1

2|D|
(
γ

|Ci|

)
|Ci||Ci|,

which only depends on s and t, and which may be strictly less because whenever
two adjacent vertices are assigned the same colour, we naturally cut the branch.
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Now let c be a partial colouring that is obtained in this way. Assume that
c uses kc colours. We let total(c) denote the smallest number of colours of a
colouring c′ of G subject to the following two conditions:

(i) c′ extends c;
(ii) c′ does not use any colours from C\Ci on vertices of Xi.

Let Z be the set of vertices that are not coloured by c. We may assume without
loss of generality that β = |X1| − |C1| = max{|Xi| − |Ci| | 1 ≤ i ≤ s− 1}.

First suppose that X1 has size at most γ, in which case Z has size at most∑
i |(Xi| − |Ci|) ≤ (s− 1)γ. By definition of the sets Ci, we are required to use

colours on Z that are not in C. In other words, we are to colour Z independently
from the way we coloured the rest of G. Because in this case |Z| only depends
on s and t, we use brute force to compute the chromatic number χG[Z] of G[Z].
Hence we find that total(c) = kc + χG[Z] in this case.

Now suppose that X1 has size at least γ + 1. We observe the following. Let
v be any vertex in D. If v is adjacent to all vertices of a clique Xi, then c(v)
does not appear in Ci, as otherwise we can cut the branch. If v is adjacent to
a set X ′i of t − 2 vertices of a clique Xi but not to some vertex w ∈ Xi, then
X ′i ∪ {v, w} induce a Kt − e in G, which is not possible. Hence, we may assume
without loss of generality that every vertex in D is adjacent to at most t − 3
vertices in every clique Xi. This means that the total number of vertices in Xi

that have a neighbour in D is at most (t − 3)|D|. Also recall that every vertex
in Xi has at most t − 3 neighbours in any Xj with j 6= i. We may assume
without loss of generality that for some h ≤ s − 1, the cliques X1, . . . , Xh are
precisely those for which |Xi| ≥ γ + 1. We apply the following greedy approach
for assigning colours from Ci to every clique Xi with 1 ≤ i ≤ h. We arbitrarily
colour a set X∗1 of |C1| vertices of X1 that are not adjacent to any vertices in
D with colours from C1. We then arbitrarily colour a set X∗2 of |C2| vertices of
X2 that are not adjacent to any vertices in D ∪X∗1 with colours from C2, and
so on, until we have processed Xh. We can follow this greedy approach, because
a clique Xi with 1 ≤ i ≤ h has a size that is sufficiently large, that is, at least
γ + 1 = (|D|+ 2)(s− 2)(t− 3) + (t− 3)|D|+ |D|+ 1. (Note that we could have
chosen γ to be smaller here, but this value simplifies the arguments in the next
paragraph.) Let c∗ denote the resulting partial colouring. Note that c∗ extends
c.

Assume that c∗ uses kc∗ colours. We claim that total(c) = kc∗ + |X1|− |C1|.
Note that total(c) < kc∗ + |X1| − |C1| is not possible, because of condition (ii)
and the fact that X1 is a clique. Hence, we are left to show that all uncoloured
vertices of G can be coloured with at most |X1| − |C1| colours. This follows
immediately from Lemma 7 by taking k = |X1| − |C1|, a = t− 3 and b = s− 1.
We may apply this lemma for the following two reasons. First, for i = 1, . . . , h,
we have |Xi| − |Ci| ≤ |X1| − |C1| by definition. Second, we have |X1| − |C1| ≥
γ + 1− |C1| ≥ 2(s− 2)(t− 3).

As we branched in all possible ways, we find that the smallest total(c) is the
chromatic number of G. Note that our algorithm runs in fpt time with parameter
s+ t, as required, and that it also produces an optimal colouring of G. ut

11



We are now ready to state and prove our main theorem.

Theorem 6. The Colouring, Independent Set and Clique problems on
(sP1 +P2,Kt− e)-free graphs are fixed-parameter tractable with parameter s+ t.

Proof. First recall the following. Because a graph is (sP1 + P2,Kt − e)-free if
and only if its complement is (P2 + (t − 2)P1,Ks+2 − e)-free, we only have to
consider the Independent Set and Colouring problems.

Let G be a (sP1 + P2,Kt − e)-free graph. We start by checking whether
G contains an independent set on s + 1 vertices. We can do this in fpt time
with parameter s+ t by Theorem 5. If it does, then G is not (s+ 1)P1-free. By
Lemma 1, this means that G must be (sP1+P2,Ks2(t−3)+2)-free. In this case, we
can solve Colouring and Independent Set by Lemmas 2 and 3, respectively.
Otherwise, that is, if G contains no independent set on s + 1 vertices, then G
is ((s + 1)P1,Kt − e)-free. In that case, we can solve Independent Set and
Colouring by Lemmas 4 and 8, respectively. ut

3 Final Remarks on Colouring for (H1,H2)-Free Graphs

The ultimate goal is to complete Theorem 3. To help with this, we are currently
trying to characterize those classes of (H1, H2)-free graphs that have bounded
clique-width. However, completing Theorem 3 will also require new proof tech-
niques to deal with a number of non-trivial cases, such as when H1 is the claw
K1,3 and H2 is a long path. As regards our result it seems natural to settle, as
a next step, the complexity status of Colouring for (sP2,Kt − e)-free graphs.
Our next result shows that the case s = 2 is polynomial-time solvable.

Theorem 7. The Colouring problem on (2P2,Kt−e)-free graphs can be solved
in polynomial time for all t ≥ 2.

Proof. Let G = (V,E) be a (2P2,Kt − e)-free graph for some integer t ≥ 0. We
use induction on t. Due to Theorem 3 (ii)-6, we find that the statement of the
theorem holds for t ≤ 4.

Let t ≥ 5. We first check if G is P4-free; this can be done in O(n4) time by
brute force. If so, then we apply Theorem 1. Otherwise, let wxyz be an induced
P4 in G. We partition the vertices in V \ {x, y} into four sets W∅,Wx,Wy,Wx,y

according to their neighbourhood in {x, y}.
We claim that G[Wx] and G[Wy] must be Kt−1-free. In order to obtain a

contradiction, suppose that one of them, say G[Wx], contains a Kt−1. Because
t ≥ 5, we can pick two distinct vertices a and b of this Kt−1. Then z must be
adjacent to at least one of a or b, as otherwise G[a, b, y, z] would be isomorphic
to 2P2. By repeating this argument we find that in fact z must be adjacent to
at least t−2 vertices of the Kt−1. However, these t−2 neighbours of z, together
with z and x, induce a Kt− e in G, which is a contradiction. Hence G[Wx], and
by symmetry, G[Wy] are Kt−1-free.
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If a, b ∈ W∅ were adjacent, then G[a, b, x, y] would be isomorphic to 2P2,
which is not possible. Hence, we find that W∅ is an independent set. We check
whether or not W∅ ∪Wx ∪Wy is also an independent set.

First suppose that W∅ ∪Wx ∪Wy is not an independent set. We claim that
G[Wx,y] is K2t−4-free. In order to obtain a contradiction, suppose that F is a
subgraph of G[Wx,y] isomorphic to K2t−4. Because W∅ ∪ Wx ∪ Wy is not an
independent set, W∅ ∪Wx ∪Wy contains an edge ab. Let c and d be two distinct
vertices of F . Then at least one of a or b must be adjacent to c or d, as otherwise
F , and thus G, contains an induced 2P2. By repeating this argument, we find
that at least 2t − 5 vertices of F must be adjacent to at least one of a or b.
Without loss of generality, we assume that a is adjacent to at least t− 2 vertices
of F . Note that a is non-adjacent to at least one of x or y. Without loss of
generality, we assume that a is non-adjacent to x. Then t− 2 neighbours of a in
F , together with a and x induce a Kt − e in G. This is a contradiction. Hence,
indeed, G[Wx,y] is K2t−4-free. Thus the maximum clique size in G is at most
2t−5+t−2+t−2+2+1 = 4t−6. Thus G is (2P2,K4t−5)-free, and consequently
also, (P5,K4t−5)-free. Hence, we may apply Theorem 3 (ii)-5.

Now suppose that W∅∪Wx∪Wy is an independent set. Consider any optimal
colouring of G. In this colouring, x and y must have different colours. Let us call
these colours 1 and 2, respectively. Then colours 1 and 2 cannot be used to colour
any vertex in Wx,y. However, W∅∪Wy ∪{x} and Wx∪{y} are independent sets.
Hence, if necessary, we can re-colour them with colours 1 and 2, respectively in
order to obtain a new colouring that is still optimal.

Due to the above observation, we may colour W∅∪Wy∪{x} and Wx∪{y} with
colours 1 and 2, respectively, and moreover, we may remove all of these vertices
from G. What remains is the graph G[Wx,y]. Because every vertex in Wx,y is
adjacent to both x and y, and G is (2P2,Kt−e)-free, G[Wx,y] is (2P2,Kt−2−e)-
free graph. By our induction hypothesis, we can solve Colouring in polynomial
time on G[Wx,y]. Hence, we have proven Theorem 7. ut

Another possible generalization of our result on Colouring is to consider
the following variant of graph colouring. In Precolouring Extension we as-
sume that a (possibly empty) subset W ⊆ V of a graph G = (V,E) is precoloured
by a precolouring cW : W → {1, 2, . . . , k} for some given integer k, and the ques-
tion is whether we can extend cW to a k-colouring of G. The classification of
Precolouring Extension on H-free graphs is known [15]. However, the clas-
sification of Precolouring Extension on (H1, H2)-free graphs is still open.
In this respect, we note that our results cannot be generalized to another even
more general variant of graph colouring called list colouring. A list assignment of
a graph G = (V,E) is a function L that assigns a list L(u) of so-called admissible
colours to each u ∈ V . We say that a colouring c : V → {1, 2, . . .} respects L
if c(u) ∈ L(u) for all u ∈ V . The List Colouring problem is that of testing
whether a given graph has a colouring that respects some given list assignment.
Golovach and Paulusma [13] completely classified the complexity of the List
Colouring problem for (H1, H2)-free graphs by showing that this problem is
polynomial-time solvable for (H1, H2)-free graphs in the following three cases:
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(i) H1 ⊆i P3 or H2 ⊆i P3, (ii) H1 ⊆i C3 and H2 ⊆i K1,3 and (iii) H1 = sP1

for s ≥ 3 and H2 = Kt for t ≥ 3, whereas it is NP-complete for all other pairs
(H1, H2).

4 The Clique-Width of (sP1,Kt − e)-free Graphs

In Section 1.2, we claimed that our results cannot be obtained by applying the
results of Kobler and Rotics [23] and Oum and Seymour [31], which together
imply that Colouring is polynomial-time solvable on classes of graphs that
have bounded clique-width. In this section, we will prove this claim by showing
that the classes we consider have unbounded clique-width unless s or t is very
small. We first state some useful facts for dealing with clique-width.

Fact 1: For a constant k and a class of graphs G, let G[k] denote the class of graphs
obtained from G by deleting at most k vertices from each graph in G. Then G
has bounded clique-width if and only if G[k] has bounded clique-width [26].

Fact 2: For a graph G, the subgraph complementation is the operation that consists
of replacing every edge of an induced subgraph of G by a non-edge, and
vice versa. For a constant k and a class of graphs G, let G(k) be the class of
graphs obtained from G by applying at most k subgraph complementations
on each graph in G. Then G has bounded clique-width if and only if G(k) has
bounded clique-width [22].

Fact 3: The clique-width of every graph with maximum vertex degree at most 2 is
at most 4 (see e.g. [6]).

Fact 4: The class of n by n grid graphs (see Figure 2 for an example) has unbounded
clique-width (see e.g. [29]).

Fact 5: The class of walls (see Figure 3 for an example) has unbounded clique-width
(see e.g. [22]).

We are now ready to prove that even for small fixed integers s and t, the
class of (sP1 + P2,Kt − e)-free graphs has unbounded clique-width. In fact this
statement even holds for the class of (sP1,Kt−e)-free graphs, a proper subclass.

Theorem 8. The class of (sP1,Kt − e)-free graphs has bounded clique-width if
and only if s ≤ 2 or t ≤ 3 or s+ t ≤ 8.

Proof. We first prove the backward implication.
Suppose that s ≤ 2. Because 2P1-free graphs are precisely those that consist

of a single clique, they have clique-width at most 2.
Suppose that t ≤ 3. The graph K3−e is also known as P3. Graphs which are

P3-free are precisely those that are the disjoint union of cliques and thus also
have clique-width at most 2.

Suppose that s+ t ≤ 8 with s ≥ 3 and t ≥ 4. Consider an (sP1,Kt − e)-free
graph G. We may assume that the graph is sP1-free, but contains an (s− 1)P1,
say, on the vertices x1, . . . , xs−1. Let X = {x1, . . . , xs−1}. Let Wi,j be the set of
vertices of G adjacent to both xi and xj , and let H = ∪i 6=jWi,j . (Note that a
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vertex may be in more than one set Wi,j .) Since G is (Kt − e)-free, every Wi,j

must be Kt−2-free. However, Wi,j is also sP1-free, so by Ramsey’s Theorem,
it must be bounded in size by a function of s and t. Therefore the set H is
bounded in size, so by Fact 1, we may remove all the vertices from this set and
the resulting (sP1,Kt − e)-free graph G′ will have clique-width bounded by a
function of s and t if and only if G has.

Now let Ui be the set of vertices whose only neighbour in X is xi. Since G′

is sP1-free, each Ui must be a clique (otherwise we could replace xi in X by two
non-adjacent vertices in Ui to form an sP1). Now suppose that for some i, j with
i 6= j, there is a vertex y ∈ Ui with t − 2 neighbours in Uj . Then these t − 2
vertices, together with y and xj , would induce a Kt− e in G′, which would be a
contradiction. Therefore each vertex in Ui has at most t−3 neighbours in Uj for
any i, j with i 6= j. We now apply the complementation operation with respect
to the sets Ui∪{xi} for each i, that is, we change these cliques into independent
sets. By Fact 2, the resulting graph G′′ will have clique-width bounded by a
function of s and t if and only if G′ has. In G′′, every vertex will have degree at
most (s− 2)(t− 3). Since s+ t ≤ 8, s ≥ 3, t ≥ 4, we know that (s− 2)(t− 3) ≤ 2.
Hence the result follows from Fact 3.

We now prove the forward implication. In order to do this it suffices to
present three graph classes of unbounded clique-width, namely the classes of
(3P1,K6− e)-free, (4P1,K5− e)-free and (5P1,K4− e)-free graphs, respectively.

First consider the class of (3P1,K6 − e)-free graphs. It easily follows from
work of Lozin and Voltz [27] that the class of bipartite (4P1+P2)-free graphs has
unbounded clique-width. Consequently, the class of (K3, 4P1 + P2)-free graphs
has unbounded clique-width. By Fact 2, the class of (3K1,K6 − e)-free graphs
has unbounded clique-width.

Now consider the class of (4P1,K5 − e)-free graphs. We construct a subclass
of this class of graphs that has unbounded clique-width.

Let G be the class of n by n grid graphs. For every G ∈ G we do as follows.
We colour each vertex of G with the sum of its x and y coordinates modulo 3;
see Figure 2 for an example. This yields a 3-colouring of G, the colour classes
of which correspond to three independent sets. We now replace each of these
three independent sets by a clique. By Facts 2 and 4, the resulting graph class
G′ obtained in this way has unbounded clique-width.

We claim that every graph in G′ is (4P1,K5 − e)-free. Let G′ ∈ G′. We first
observe that G′ is 4P1-free, because V (G′) can be partitioned into three cliques.
Now suppose that G′ contains an induced K5 − e. By construction, G′ contains
no K3 that consists of one vertex from each of the colour classes. Thus there must
be two colour classes that contain all five of the vertices in the K5 − e. However
any vertex in any colour class can have at most two neighbours in any other
colour class. This leads to a contradiction. Hence, we have found a subclass of
the class of (4P1,K5 − e)-free graphs, namely the class G′, that is of unbounded
clique-width.

Finally, we consider the class of (5P1,K4 − e)-free graphs. We construct a
subclass of this class of graphs that has unbounded clique-width.
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0 1 2 0 1

1 2 0 1 2

2 0 1 2 0

0 1 2 0 1

1 2 0 1 2

Fig. 2. A 5 by 5 grid graph coloured with three colours.

Let G be the class of walls. For each G ∈ G we do as follows. On the top
“level” of G, we colour the vertices (in order) 1, 2, 3, 4, 1, 2, 3, 4, and so on. On the
second level, we colour them 3, 4, 1, 2, 3, 4, 1, 2 and so on. On subsequent levels,
we alternate between these two colourings; see Figure 3 for an example. Note
that this is a 4-colouring of G, as no two vertices of the same colour are adjacent.
Also, no vertex has two neighbours of the same colour. We replace each of the
four independent sets that form the colour classes by a clique. By Facts 2 and
5, the resulting graph class G′ has unbounded clique-width.

We claim that every graph in G′ is (5P1,K4 − e)-free. Let G′ ∈ G′. Because
V (G′) can be partitioned into four cliques, G′ is 5P1-free. No vertex from one
clique can have two neighbours in one of the other cliques. Therefore, if a K4−e
is present, it must consist of one vertex from each of the cliques. Consider a
vertex x of degree 3 in the K4 − e, and let i be the colour of this vertex. By
construction, the vertices of colours present in the K4 − e that are not of colour
i are uniquely determined by the choice of x, as they must be neighbours of
x in G′. By construction, the neighbours of x in G′ are pairwise non-adjacent.
Hence, we obtain a contradiction. We have thus constructed a subclass of the
class of (5P1,K4 − e)-free graphs, namely the class G′, that is of unbounded
clique-width. ut
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3. A. Brandstädt, H.-O. Le, R. Mosca, Gem- and co-gem-free graphs have bounded
clique-width, Internat. J. Found. Comput Sci. 15 (2004), 163–185.

4. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Determining the chro-
matic number of triangle-free 2P3-free graphs in polynomial time, Theoretical Com-
puter Science 423 (2012) 1–10.

5. H.J. Broersma, P.A. Golovach, D. Paulusma and J. Song, Updating the complexity
status of coloring graphs without a fixed induced linear forest, Theoretical Com-
puter Science 414 (2012) 9–19.

16



3 4 1 2 3 4 1

1 2 3 4 1 2 3 4

3 4 1 2 3 4 1 2

1 2 3 4 1 2 3 4

3 4 1 2 3 4 1 2

1 2 3 4 1 2 3

Fig. 3. A wall with a special 4-colouring.

6. B. Courcelle and S. Olariu, Upper bounds to the clique width of graphs, Discrete
Applied Mathematics 101, (2000) 77–114.

7. J.F. Couturier, P.A. Golovach, D. Kratsch and D. Paulusma, List coloring in the
absence of a linear forest, Proc. WG 2011, LNCS 6986 (2011) 119–130.

8. J.F. Couturier, P.A. Golovach, D. Kratsch and D. Paulusma, On the parameterized
complexity of coloring graphs in the absence of linear forest, Journal of Discrete
Algorithms 15 (2012) 56–62.

9. K.K. Dabrowski, P.A. Golovach and D. Paulusma, Colouring of graphs with
Ramsey-type forbidden subgraphs, Proc. WG 2013, LNCS, 8165 (2013) 201–212.

10. K.K. Dabrowski, V.V. Lozin, H. Müller and D. Rautenbach, Parameterized com-
plexity of the weighted independent set problem beyond graphs of bounded clique
number, Journal of Discrete Algorithms 14 (2012) 207–213.

11. K.K. Dabrowski, V.V. Lozin, R. Raman and B. Ries, Colouring vertices of triangle-
free graphs without forests, Discrete Mathematics 312 (2012) 1372–1385.

12. R. Diestel, Graph Theory, Springer-Verlag, Electronic Edition, 2005.
13. P.A. Golovach and D. Paulusma, List coloring in the absence of two subgraphs,

Proc. CIAC 2013, LNCS, 7878 (2013), 288–299
14. P.A. Golovach, D. Paulusma and J. Song, 4-Coloring H-free graphs when H is

small, Discrete Applied Mathematics 161 (2013) 140–150.
15. P.A. Golovach, D. Paulusma and J. Song, Closing complexity gaps for coloring

problems on H-free graphs, Proc. ISAAC 2012, LNCS 7676 (2012) 14–23.
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