Data Oscillation and Convergence of Adaptive FEM

Stefano Giani

Department of Mathematical Sciences
University of Bath

Numerical Analysis Seminar
03 November 2006
P. Morin, R. H. Nocetto and K. G. Siebert.
Data Oscillation and Convergence of Adaptive FEM.
Outline

Introduction
 Model Problem
 Mesh Adaptivity

Old Framework
 Old Framework

New Framework
 Introduction
 Error Reduction
 Main Result
Model Problem

Let’s:

- \(\Omega \) a polygonal domain bounded in \(\mathbb{R}^2 \)
- \(f \) a given function in \(L^2(\Omega) \),
- \(A \) is a piecewise constant positive symmetric matrix on \(\Omega \),

Problem: seek \(u \) the solution of the problem

\[
\begin{aligned}
-\text{div}(A \nabla u) &= f & \text{in } \Omega, \\
 u &= 0 & \text{on } \partial \Omega.
\end{aligned}
\]
Weak Form

Problem: seek \(u \in H^1_0(\Omega) \) such that

\[
a(u, v) = (f, v)_{0,\Omega} \quad \forall v \in H^1_0(\Omega),
\]

where

\[
a(u, v) := \int_{\Omega} (A \nabla u) \cdot \nabla v \, dx,
\]

\[
\|v\|_{\Omega} := \left(\int_{\Omega} (A \nabla v) \cdot \nabla v \, dx \right)^{1/2},
\]

\[
(f, v)_{0,\Omega} := \int_{\Omega} f v \, dx.
\]
Meshes and Discrete Problems(I)

Define:

- \mathcal{T}_H conforming triangulation of Ω
 \mathcal{T}_H resolves the jumps of A,
- S_H is the set of the sides of the triangles of \mathcal{T}_H,
- V_H space of piecewise linear functions over \mathcal{T}_H.

$$V_H \subset H_0^1(\Omega) \cap C^0(\Omega) \quad \text{(conforming)}$$
Meshes and Discrete Problems(II)

Problem: seek $u_H \in V_H$ such that

$$a(u_H, v_H) = (f, v_H)_{0, \Omega} \quad \forall v_H \in V_H.$$
A Posteriori Error Estimate

\[\eta_H^2 := \sum_{S \in S_H} \eta_{S,H}^2, \]

\[\eta_{S,H}^2 := \| H_S^{1/2} J_S \|^2_{0,S} + \| Hf \|^2_{0,\Omega_S}, \]

\[J_S := [A \nabla u_H]_S \cdot \nu. \]

Properties:

1. \[\| u - u_H \|_{\Omega}^2 \leq C_1 \eta_H^2 \] (Reliability)
2. \[C_2 \eta_{S,H}^2 - C_3 \| H(f - f_H) \|^2_{0,\Omega_S} \leq \| u - u_H \|_{\Omega_S}^2 \] (Local Efficiency)

All constant \(C_i \) are independent of \(H \)
Goal

Given a tolerance $\varepsilon > 0$, compute an approximated solution u_H:

$$\|\|u - u_H\|\|_\Omega \leq \varepsilon.$$
Mesh Adaptivity (Algorithm A)

1. Solve the problem for u_H
2. If $\|u - u_H\|_\Omega > \varepsilon$ Then
3. Mark the elements to be refined
4. Refine the mesh
5. Go To 1
6. End
Regularity: $u \in H^{1+\beta}(\Omega) \cap H_0^1(\Omega)$

$$||u - u_H|| \leq C H_{max}^{1+\beta} |u|_{1+\beta}.$$

Remarks:
- strategy: reduce H_{max},
- refine everywhere soon or later,
- mesh adaptivity doesn’t fit in this framework.
Definitions

Oscillations:

$$\text{osc}(f, \mathcal{T}_H) := \left(\sum_{\tau \in \mathcal{T}_H} \|H_{\tau}(f - f_H)\|_2^2 \right)^{1/2}.$$

Marking Strategy: for a given $0 < \theta < 1$,

$$\left(\sum_{S \in \mathcal{S}_H} \eta_{S,H}^2 \right)^{1/2} \geq \theta \eta_H.$$ \hspace{1cm} (1)

Refinement by newest-vertex bisection.
Refined Mesh

Define:

- \mathcal{T}_h conforming triangulation of Ω
 \mathcal{T}_h is a refinement of \mathcal{T}_H
- V_h space of piecewise linear functions over \mathcal{T}_h

$$V_h \subset H^1_0(\Omega) \cap C^0(\Omega) \quad \text{(conforming)}$$

$$V_H \subset V_h$$
Error Reduction (I)

Theorem

Let \mathcal{T}_H be a triangulation of Ω, $\hat{\mathcal{T}}_H$ and \hat{S}_H be as defined in Marking strategy 1. Let \mathcal{T}_h be the refinement of \mathcal{T}_H. Then there exist constants $\mu > 0$ and $0 < \alpha < 1$, such that for any $\varepsilon > 0$ if

$$\text{osc}(f, \mathcal{T}_H) \leq \mu \varepsilon,$$

then either $\|u - u_H\| \leq \varepsilon$ or the solution u_h on \mathcal{T}_h satisfies

$$\|u - u_h\| \leq \alpha \|u - u_H\|.$$
Error Reduction (II)

$\mu > 0$ and $0 < \alpha < 1$ depends on:

- the minimum angle of the mesh \mathcal{T}_H,
- the value of θ in the Marking strategy 1,
- the continuity constant of the bilinear form $a(\cdot, \cdot)$,
- the coercivity constant of the bilinear form $a(\cdot, \cdot)$,
Remarks

- there is a condition on the initial mesh \(\text{osc}(f, I_H) \leq \mu \varepsilon \),
- if all the conditions are satisfied, the prescribed tolerance \(\varepsilon \) may be met in finite steps,
- the mesh size \(H_{\text{max}} \) may not tend to 0,
Second Marking Strategy

Marking Strategy: for a given $0 < \hat{\theta} < 1$, enlarge $\hat{\mathcal{T}}_H$ such that:

$$\text{osc}(f, \hat{\mathcal{T}}_H) \geq \hat{\theta} \text{osc}(f, \mathcal{T}_H).$$

(2)
Oscillation Reduction

Theorem

Let \mathcal{T}_H be a triangulation of Ω, $\hat{\mathcal{T}}_H$ and \hat{S}_H be as defined in Marking strategy 2. Let \mathcal{T}_h be the refinement of \mathcal{T}_H. Then there exists constant $0 < \hat{\alpha} < 1$, such that

$$\text{osc}(f, \mathcal{T}_h) \leq \hat{\alpha} \text{osc}(f, \mathcal{T}_H).$$
Mesh Adaptivity (Algorithm B)

1. Solve the problem for u_H
2. If $\|u - u_H\|_\Omega > \varepsilon$ Then
3. Marking strategy 1
4. Marking strategy 2
5. Refine the mesh
6. Go To 1
7. End
Main Result

Theorem

Let u_k be a sequence of finite element solutions produced by Algorithm B. There exist positive constants C_0, $\beta < 1$, depending on the initial mesh and the data of the problem, such that

$$\|u - u_k\|_\Omega \leq C_0 \beta^k.$$
Remarks

- the error may not decay at each single step,
- the condition on the initial mesh is only sufficient!