Special Issue

Recent Developments on Seafloor Petrology and Tectonics: A Volume in Honour of Roger Hekinian for His Life-Long Contributions to Marine Petrology and Tectonics Research

edited by

YAOLING NIU

Commission on Solid Earth Composition & Evolution

This special Lithos issue is dedicated to Roger Hekinian for his lifetime contributions to marine petrology and tectonics research by his friends, colleagues, shipmates, students and those whose careers have benefited from his inspiration and encouragements.
Recent developments on seafloor petrology and tectonics - A volume in honour of Roger Hekinian for his life-long contributions to marine petrology and tectonics research
Edited by Yaoling Niu

1. Recent developments on seafloor petrology and tectonics: A volume in honour of Roger Hekinian for his life-long contributions to marine petrology and tectonics research
 Pages vii-ix
 Yaoling Niu

2. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust–mantle differentiation and chemical structure of oceanic upper mantle
 Pages 1-17
 Yaoling Niu, Michael J. O'Hara

3. Pre-eruption history of enriched MORB from the Menez Gwen (37°50′N) and Lucky Strike (37°17′N) hydrothermal systems, Mid-Atlantic Ridge
 Pages 18-39
 Ana Filipa A. Marques, Steven D. Scott, Michael P. Gorton, Fernando J.A.S. Barriga, Yves Fouquet

4. The geological setting of the ultramafic-hosted Logatchev hydrothermal field (14°45′N, Mid-Atlantic Ridge) and its influence on massive sulfide formation
 Pages 40-56
 S. Petersen, K. Kuhn, T. Kuhn, N. Augustin, R. Hékinian, L. Franz, C. Borowski

5. Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26°S
 Pages 57-72
 Marcel Regelous, Yaoling Niu, Wafa Abouchami, Pat R. Castillo

6. Paired melt lenses at the East Pacific Rise and the pattern of melt flow through the gabbroic layer at a fast-spreading ridge
 Pages 73-86
 James H. Natland, Henry J.B. Dick

7. Geochemistry of mid-Cretaceous Pacific crust being subducted along the Tonga–Kermadec Trench: Implications for the generation of arc lavas
 Pages 87-102
 P.R. Castillo, P.F. Lonsdale, C.L. Moran, J.W. Hawkins

8. The petrology of seafloor rodingites: Insights from geochemical reaction path modeling
 Pages 103-117
 Wolfgang Bach, Frieder Klein

9. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism
 Pages 118-136
 Emma R. Humphreys, Yaoling Niu

10. A geochemical study of off-axis seamount lavas at the Valu Fa Ridge: Constraints on magma genesis and slab contributions in the southern Tonga subduction zone
 Pages 137-148
 Karsten M. Haase, Susanne Fretzdorff, Richard Mühle, D. Garbe-Schönberg, Peter Stoffers

11. Geochemistry and geochronology of the metamorphic sole underlying the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, South Tibet
 Pages 149-162
 Carl Guilmette, Réjean Hébert, Chengshan Wang, Mike Villeneuve

Copyright © 2009 ScienceDirect. All rights reserved. Any unauthorized use, reproduction, or transfer of this message or its contents, in any medium, is strictly prohibited. ScienceDirect® is a registered trademark of Elsevier B.V.
Preface

Recent developments on seafloor petrology and tectonics: A volume in honour of Roger Hekinian for his life-long contributions to marine petrology and tectonics research

Roger Hekinian was born at home in Marseilles, France on October 2, 1935, to Anahid and Ohvannes Hekinian. Roger grew up in the same home as his parents, his sister Josette, his grandparents and an Aunt and Uncle, so the family values of an Armenian home were quickly learned and assimilated. At age 13, his education in France ended because his family sent him to an Armenian parochial boarding school run by Mekhetarian priests in Venice, Italy. While at this school, he learned to read and write Armenian, as well as Italian. By the time he graduated from high school, Hekinian could already speak and read three languages. His initial university work took place in Padua, Italy, but he soon transferred to the University of Pisa to specialize in geology. He became extremely interested in the new frontier of oceanographic research, and in 1961 he decided to migrate to the USA where he entered Columbia University in Palisades, New York. He worked in the core laboratory under the supervision of Maurice Ewing and Charles Fray. At first, the young immigrant was asked to do menial chores on board the Lamont-Doherty research vessels. Hekinian's first sea-going experience was to drop dynamite sticks off the end of the ship (to measure the ocean floor's seismicity) as well as to help with the dredging and coring operations. After 7 months at sea, his mastery of the English language had improved and Columbia accepted him in a full scholarship program to work on a Master's degree in petrology under the supervision of Arie Poldervaart, a South African specialist in the field. Unfortunately, Dr. Poldervaart died before Hekinian could finish the Master thesis, so he completed his work with the support of Poldervaart's assistant, D. Vincent Manson, in the summer of 1966. On the advice of Paul Gast and other professors at Columbia, Hekinian then went to a young school in Binghamton that was part of the SUNY (State University of New York) system, Harpur College. With Thomas Donnelly as his advisor, Roger rapidly completed the course of study and wrote and defended his PhD thesis (on spilitic formations from the Virgin Islands) in June 1969. This thesis was Harpur College's (now called SUNY Binghamton) first PhD thesis, a “dubious” distinction that helped young Hekinian obtain a job a month later.

Hekinian's first job was at the Smithsonian Institution (in the then called Sorting Center) in Washington, D.C., where he worked with Dr. Tom Simkin. The Sorting Center was a national repository for cores and dredge samples collected mainly from the South Pacific. This was an exciting time in the Earth Sciences during which the plate tectonics theory was gaining acceptance. Persuaded by his countryman Xavier Le Pichon and others, a year later Roger joined the team formed at the new oceanographic center being built near Brest, France, then called CNEXO, now known as IFREMER (Institut Français pour le Recherche et Exploitation de la Mer—French oceanographic research institution). He worked continually at IFREMER until his retirement in 2000 at age 65.

When he was a doctoral student at Binghamton, he met Virginia (Ginny) Baker and the two were married in August 1970. Thus, Roger returned to France nine years after immigrating to America with an American passport, a new wife, a Toyota automobile and 17 boxes of books. In January 1971, the couple set up housekeeping in Brittany, first by the sea in the village of Le Conquet, then inland in a stone house, in St Renan, where they have lived since 1975. Two sons were soon born into their family: Aram (1973) and Diran (1975). A daughter, Anna, was born in 1978. Since his retirement, Roger has been a patient gardener, a generous father and an enthusiastic grandfather to his three grandsons: Sevan and Shaye Petit and Ara Hekinian. He is frequently found on German ships on which, as an Alexandre von Humboldt Research Fellow, he continues his long-term Franco-German collaboration with Peter Stoffers and his research group at Kiel, collecting rocks at sea and writing papers and books back home on seafloor petrology and tectonics.

As the family was growing, Roger was also getting more involved in “state-of-the-art” oceanographic adventures. Over his seafloor research career, Roger has been on more than 60 missions at sea, mapping the seafloor and collecting rock samples from the Pacific, Atlantic and Indian oceans. These include a number of subsensible diving expeditions, for which he has set the record for being one of the most experienced in the world in terms of total amount of time expended in deep ocean subsensibly making in situ observations and sampling. He has worked with many oceanographic pioneers including Xavier Le Pichon (College de France), Jean Francheteau (Universite de Bretagne Occidentale) and Bob Ballard from Woods Hole Oceanographic Institution. Roger has

His book *Petrology of the Ocean Floor* (Elsevier, 1982) is the first comprehensive text of its kind, which, based mostly on his personal experience and knowledge, has inspired many. I myself am one of those inspired to choose the study of seafloor petrology and tectonics as a research career. His edited book (with P. Stoffers and J.-L. Cheminée) *Oceanic Hotspots* (Springer, 2004) summarized not only the state-of-the-art knowledge on magmatism of intraplate volcanic islands, but also offered new concepts on "plume–ridge" interactions and pointed to new research directions particularly important in the context of current "Great Mantle Plume Debate". His (with N. Binard) *Le Feu des Abysses* (The fire of abysses) (Quae, 2008) is a valuable research document as well as an educational requisite for understanding the origin and evolution of ocean crust from ocean ridge magmatism to intraplate ocean island volcanism using photographs of seafloor structures and morphology taken during deep sea submersible operations.

It is a common knowledge today that most mid-ocean ridge basalts (MORB) are depleted in incompatible elements, called normal or N-type MORB, but some are incompatible element enriched E-type MORB, and still some are compositionally transitional to "plume-like" basalts, hence the acronyms of T-MORB and P-MORB. These distinctions, though somewhat arbitrary, are in fact documented through the famous collaborative project FAMOUS (Franco-American Mid-Ocean Undersea Study) in the early 1970s (1972, 1973, 1974) at the North Mid-Atlantic Ridge (MAR). Roger played a major role in this project supervising on-site (in submersible) operation with his colleagues from IFREMER and from Woods Hole Oceanographic Institution in the US. It is well-known that MORB from the MAR and EPR show some systematic differences, but Roger was among the first to recognize such differences. Hydrothermal venting and sulfide mineralization are now known to be widespread along the global ocean ridge system, but again Roger is among the first to identify and describe these systems. In 1978, Roger and his team discovered several hydrothermal vents at the East Pacific Rise (EPR), and in 1982, he discovered and described in great detail (submersible operation) hydrothermal chimneys and sulfide mineralization at 13°N on the EPR. To most of us, it seems quite natural to think of transforms as one type of plate boundaries, but the origin of transforms/fracture zones is rather poorly understood (or not understood at all). His discovery of intra-transform volcanism was a pleasant surprise for understanding mantle melting processes and for rethinking the origin and tectonic evolution of transforms and fracture zones. His discoveries of mantle peridotites from transforms and tectonic deeps in the Pacific have led to the understanding that the extent of mantle melting beneath ocean ridges increases with increasing plate spreading rate. His new perspectives and ideas about the geology and volcanology of intraplate volcanic islands and island arcs are illuminating. It is fair to say that without Roger and his life-long contributions, our present-day knowledge of seafloor petrology and geology would not be the same because of all the above, and because over the past 40 years of his unselshless collaborations with others by offering advice, sharing experience, helping and encouraging younger scientists, and by providing precious samples for additional petrologic and geochemical studies towards an improved understanding of the chemical geodynamics.

This special Lithos volume is dedicated to Roger Hekinian for his lifetime contributions to marine petrology and tectonics research by his friends, colleagues, shipmates, students and those whose careers have benefited from his inspiration and encouragements. I first met Roger on board JOIDES RESOLUTION during ODP Leg 142 in early 1992 before I got my PhD in that year. I soon found this famous man was kind and resourceful and our 2-month drilling cruise marked the beginning of our friendship and pleasant collaboration (6 co-authored papers). I discovered later during my IFREMER visit in 1996 that this prolific scientist is also an admirable family man. How could one manage to do all these? He has a lovely and understanding wife and children! He worked triply hard at home to catch up with all that he had missed while at sea, from a few weeks to months each year—a long time for the family and for the growing children. His Armenian roots are well represented in the first names of his children and grandsons, his personal warmth is reflected in the many barbecues he has cooked and served to his friends and colleagues over the years, and he is modest almost to a fault since he would be the first to say “I haven’t discovered anything” when asked about his accomplishments. He is not a publicity-seeker, and is certainly not a person to look for recognition (although he was honoured with a “Joubin-James Distinguished Lecturer” by the University of Toronto in 1989 and received the bronze “Hans Petterson Memorial Medal” from the Royal Swedish Academy of Sciences in 1999). His interest is entirely in science and the joy of discovery. He has set an example for many of us to follow. His achievements, his modesty and his spirit of unselshless collaboration are well recognized through this special volume—a long-lasting scientific legacy in the Earth Science.

The 10 articles in this special volume all take the "conventional approach" that Roger is familiar with, i.e., field observation and sampling, data collection and geologic interpretation with modeling. However, they have reached non-conventional, novel and provocative conclusions on important Earth problems. *Niu and O’Hara* demonstrate that primitive MORB melts have positive Eu and Sr anomalies, suggesting that the MORB mantle possess excess Eu and Sr. They further stress that MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust and propose that ocean crust melting during continental collision (ocean basin closing) produces and preserves the juvenile crust, and hence maintains net continental crust growth. This new concept circumvents all the difficulties with the widely accepted ‘island arc magmatism’ model for continental growth. They also hypothesize that the seismic low velocity zone (LVZ) is compositionally stratified with small melt fractions concentrated towards the top to metasomatize the growing oceanic lithosphere before it reaches its full thickness after ~70 Myr. In contrast, deep portions of the LVZ, which are thus relatively depleted, become the primary source feeding MORB because of ridge suction. *Marques et al.* show that plagioclase phenocrysts in MORB melts in the vicinity of the Menez Gwen and Lucky Strike hydrothermal fields at North MAR have abundant melt inclusions with concentrated metallic precipitates (Fe + Ni + Cu + Zn + S ± Cl) within the vapor bubbles. These observations lead them to propose that degassing and melt-rich fluid exsolution at magmatic conditions may be far more important than previously thought in direct metal contribution (vs. hydrothermal fluid leaching) to seafloor sulfide mineralization. *Peterson et al.* provide thus far the most comprehensive and clear documentation of hydrothermal activities and associated mineralization in "peridotite dominated host" at 14°45’N MAR. A detailed geochemical study of MORB and near-ridge seamounts at ~26°S MAR allows *Regelous et al.* to argue that the so-called Dupal Anomaly in the South Atlantic may be of shallow (vs. deep mantle plumes) origin with contributions from ancient lower continental crust, probably associated with the continental breakup and South Atlantic opening at ~134 Ma.

Natland and Dick interpret the two thin melt lenses detected geophysically beneath the fast spreading EPR to function differently in regulating the chemical and physical processes of magma differentiation. The deeper melt lens at the Moho depth represents a level of neutral buoyancy of primitive mantle melt laden with olivine crystals. The shallow melt lens at the base of the sheeted dikes represents a permeability barrier where much of the magma fractionation takes place, determining the compositions of erupted MORB melts. They base their interpretations on a composite lithostratigraphy observed in Hess Deep. *Castillo et al.* present geochemical data on basalts of old Pacific plate seafloor that is being subducted beneath the Tonga–Kermadec.
Preface

We welcome the opportunity to review the manuscripts submitted for publication in this volume, and interpret the protoliths to be backup suture zone in southern Tibet as the result of India-Asia continental collision. Furthermore, the data also show that both the slab component in the melt and melt production increase as the volcanoes approach the volcanic arc. Guillette *et al.* present data on old seafloor rocks exposed on land—the Tethyan ophiolite along the Yarlung Zanbo suture zone in southern Tibet as the result of India-Asia continental collision. They focus their study on strongly foliated amphibolite clasts in the ophiolitic mélange, and interpret the protoliths to be back arc basalts metamorphosed in response to the formation of rodingites at the interface between mafic and ultramafic contact zones in response to serpentinitization, and conclude that rodingitization is most likely the result of diffusional metasomatism, controlled by a silica (vs. Ca) activity gradient in the fluid across the lithological boundary. The apparent Ca gain in the rodingite is a passive response to hydrous species diffusion.

Humphreys and Niu demonstrate that despite compositional variability of basalts from intraplate volcanic islands (i.e., OIB) between flows on single islands, between islands and between island groups, the lithosphere thickness at the time of volcanism exerts the first order control on OIB compositional systematics on a global scale. *Hause et al.* present geochemical data on new samples from seamounts in the vicinity of the Valu Fa Ridge in the southern Lau Basin, a backarc basin behind the Tonga island arc system in the southwest Pacific. The new data show that like seamounts near the EPR, the seamounts in back arc basins are also more primitive and compositionally more variable than the nearby ridge axis. This observation is thus of global significance. Furthermore, the data also show that both the slab component in the melt and melt production increase as the volcanoes approach the volcanic arc. Guillette *et al.* present data on old seafloor rocks exposed on land—the Tethyan ophiolite along the Yarlung Zanbo suture zone in southern Tibet as the result of India-Asia continental collision. They focus their study on strongly foliated amphibolite clasts in the ophiolitic mélange, and interpret the protoliths to be back arc basalts metamorphosed in response to the formation of rodingites at the interface between mafic and ultramafic contact zones in response to serpentinitization, and conclude that rodingitization is most likely the result of diffusional metasomatism, controlled by a silica (vs. Ca) activity gradient in the fluid across the lithological boundary. The apparent Ca gain in the rodingite is a passive response to hydrous species diffusion.

We thank IUGS/IMA Commission on Solid Earth Composition and Evolution (SECE) and Elsevier B.V. for support. We are indebted to Mr. Ruud Koolie, the Journal Manager, for his patience and always prompt action in dealing with the review processes. We in particular thank Nelson Eby for his advice, help and support throughout the process. Finally, we would like to thank the following colleagues for reviewing the manuscripts submitted for publication in this volume, without whose help we would have not maintained the high scientific standards we have striven for: Wolfgang Bach, Shem Bloomer, Mathilde Cannat, Pat Castillo, Laurence Coogan, Fred Frey, Ron Frost, John Gamble, David Graham, Karsten Haase, Xuping Li, David Peate, Mike Perfit, Sebastien Pilet, Marcel Regelous, Ian Smith, Jifeng Xu and Shuangquan Zhang.

Selected publications of Roget Hekinian

Books

Yaoling Niu
Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
E-mail address: yaoling.niu@durham.ac.uk.

17 June 2009