Two types of peridotite in North Qaidam UHPM belt and their tectonic implications for oceanic and continental subduction: A review

Shuguang Song a,b,*, Li Su b, Yaoling Niu c, Guibin Zhang a, Lifei Zhang a

a MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
b State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China
c Department of Earth Science, Durham University, Durham DH1 3LE, UK

A R T I C L E I N F O

Article history:
Received 8 March 2008
Received in revised form 16 November 2008
Accepted 17 November 2008

Keywords:
Peridotite
Continental subduction and collision belt
Ultrahigh-pressure metamorphism
North Qaidam

A B S T R A C T

Two types of peridotites are recognized in the North Qaidam continental-type UHP metamorphic belt. (1) Garnet peridotite, which includes garnet lherzolite, garnet-bearing dunite, garnet-free dunite and garnet pyroxenite, is one of the most informative lithologies in a continental-type subduction zone. Observations such as diamond inclusion in a zircon crystal and decompression exsolutions in garnet and olivine, plus thermobarometric calculations, argue that this garnet peridotite must have derived from mantle depths in excess of 200 km. Geochemical data reveal that the protolith of the garnet peridotite is largely of cumulate origin from high-Mg melts in a sub-arc mantle wedge environment rather than a abyssal peridotite. (2) Oceanic lithospheric mantle harzburgite, which occurs together with a meta-cumulate complex (including garnet pyroxenite and kyanite-eclogite) and with eclogite of MORB protolith. They are interpreted as exhumed blocks of the subducted oceanic lithosphere formed in the Cambrian (~500–550 Ma). The presence of these two types of peridotites in the same continental-type subduction belt is unique and they allow a better understanding of the tectonic history of the North Qaidam continental-type UHP belt in particular and processes of plate tectonic convergence from oceanic lithosphere subduction to continental collision/subduction in general.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

High-pressure metamorphic rocks within orogenic belts record dynamic Earth processes of subduction and exhumation of both oceanic and continental lithospheric materials. Paleo-subduction zones identified within continents may be conveniently divided into oceanic-type and continental-type in terms of lithological assemblages (Song et al., 2006), which are equivalent to the Pacific-type and Alpine-type (Ernst, 2001) or B-type and A-type (Maruyama et al., 1996) subduction zones in the literature. The general notion is that, after oceanic lithosphere is totally consumed, the continental portion of the same lithosphere (i.e., in the case of passive continental margins) continues to subduct to depths greater than 80 km before exhumation as a result of oceanic lithosphere broke-off at depth. The Cenozoic Himalayan and Alpine orogenies (e.g., O’Brien, 2001) and the Early Paleozoic Qilian–Qaidam orogeny (e.g. Song et al., 2006) are interpreted as examples of such processes.

Rock assemblages differ between the two end-member subduction zone scenarios. The oceanic-type subduction zone, such as the North Qilian suture zone, contains ophiolitic mélange (i.e., oceanic lithospheric fragments), lawsonite- or carpholite-bearing high-pressure low-temperature blueschists and eclogites (i.e., products of “cold” subduction), and an island-arc magmatic sequence (Wu et al., 1993; Song et al., 2007b; Zhang et al., 2007). The continental-type subduction zone, on the other hand, consists mainly of ortho- and para-gneisses, blocks of medium- to high-temperature eclogite, marble and other metasediments and garnet-bearing peridotite. The Dabie-Sulu ultrahigh-pressure metamorphic (UHPM) belt in eastern China and the North Qaidam UHPM belt of this study are type examples.

Garnet peridotite is volumetrically small yet a common component in UHPM terranes of many continental-type subduction belts such as the well-studied West Gneiss Region of Norway (e.g., O’Hara and Mercy, 1963; Carswell et al., 1983; Medaris and Carswell, 1990) and the Dabie-Sulu terrane of eastern China (e.g., Yang et al., 1993; Zhang et al., 2000). This type of peridotite has received much attention for their special textures, mineral assemblages and ultradepth origin (Dobrzhinetskaya et al., 1996; van Roermund and Drury, 1998; van Roermund et al., 2001; Song et al., 2004, 2005a,b; Liu et al., 2005; Spengler et al., 2006). The observation that the orogenic garnet peridotite is exclusively associated with zones of continental collision, but is absent in zones of oceanic lithosphere subduction, has led to the suggestion of a genetic affinity of garnet peridotite with continental subduction
and subsequent continental collision. In contrast, garnet-free, strongly-serpentinized peridotite is commonly believed to be restricted to oceanic-type subduction zones and is believed to represent the fragment of oceanic lithospheric mantle.

The North Qaidam UHPM belt is a typical continental-type subduction zone with characteristic rock assemblages described above (Yang et al., 2001, 2002; Song et al., 2003a,b, 2004, 2005a, 2006; Zhang et al., 2006; Mattinson et al., 2006, 2007). However, geochemical data revealed that protoliths of most of these eclogites show a broad similarity to present-day N-type and E-type MORB (Song et al., 2003b, 2006; Meng et al., 2003; Yang et al., 2006; Zhang et al., 2008). Furthermore, Song et al. (2003b) noted a strongly-serpentinized garnet-free peridotite block within bodies of eclogite with MORB-like chemistry in the North Dulan belt. Similarly, Zhang et al. (2005) reported a harzburgite block together with eclogite-facies metamorphosed ultramafic to mafic cumulate that are most consistent with being an upper mantle and lower oceanic crust ophiolite sequence. Therefore, the presence of two types of peridotites with different tectonic histories in the North Qaidam UHPM belt warrants reconsideration of tectonic models for continental subduction, at least for the case of the North Qaidam UHPM belt.

2. Geological background

The North Qaidam UHPM belt is located between the Qilian Block in the north and Qaidam Block in the south. It trends NWW and extends from Dulan northwestward, through Xitieshan and Lüliangshan, to Yuka for about 400 km (see Fig. 1) where it is offset from the equivalent Altun UHPM belt by the Altyn Tagh Fault, a large NE-striking left-lateral strike-slip fault in western China. The Qilian Block is bound further to the north by an Early Paleozoic oceanic-type suture (the North Qilian suture zone) with well-exposed blueschists, eclogites and ophiolites (Wu et al., 1993; Song, 1996; Song et al., 2007a,b; Zhang et al., 2007). The North Qaidam/Altun UHPM belt mainly consists of granitic and pelitic gneisses intercalated with blocks of eclogite and varying amounts of ultramafic rocks. The rock assemblages suggest that this belt is typical of a continental-type subduction zone that differs from the “cold”, oceanic-type subduction of the North Qilian suture zone.

Coesite and diamond inclusions have been identified in zircon grains from meta-pelite at Dulan (Yang et al., 2001, 2002; Song et al., 2003a,b) and from the garnet peridotite at Lüliangshan (Song et al., 2005a), respectively; their occurrence and P–T estimates of the enclosing eclogite and garnet peridotite establish the North Qaidam eclogite belt as an Early Paleozoic UHPM terrane exhumed from depths >100–200 km.

3. Occurrence and petrography

3.1. Lüliangshan garnet peridotite

The Lüliangshan garnet peridotite, first reported by Yang et al. (1994), is the only such an occurrence that has been so far recognized within the 400-km-long North Qaidam UHPM belt. It occurs as a large (~500 × 800 m in size) massif, located in Lüliangshan area, ~20 km south of the town of Da Qaidam, and is hosted within an eclogite-bearing quartzofeldspathic gneiss terrane (see Fig. 1 for its locality). This garnet peridotite massif comprises a wide range of lithologies from rocks dominated by olivine to those dominated by pyroxene. On the basis of field and petrographic observations, Song et al. (2005a, 2007a,b) grouped the rocks into four types: (1) mostly garnet lherzolite with minor amounts of (2) garnet-bearing harzburgite/dunite, (3) garnet-free dunite and (4) garnet pyroxenite dikes/dikelets (see Fig. 2 for field occurrence). Fig. 3 shows the reconstructed low-pressure (e.g., stable in the spinel peridotite field) (Niu, 1997) modes of these four rock types from their bulk-rock compositions. The garnet-free dunite plots in the harzburgite field, the garnet-bearing dunite at the boundary between harzburgite and lherzolite fields, garnet lherzolite in the fields of lherzolite and olivine websterite, and garnet pyroxenite mainly in the websterite field.

3.1.1. Garnet lherzolite

The garnet lherzolite constitutes ~70–80% of the garnet peridotite massif. It is massive and coarse-grained without obvious foliations. All peridotites in the field occur as layers with varying...
thickness (from meters to centimeters) and sharp boundaries (Fig. 2b–d). Pyroxenes vary in abundance on various scales, and thus the lithology could be termed as either garnet lherzolite or olivine websterite. The main constituent minerals are garnet, olivine, orthopyroxene (opx), clinopyroxene (cpx) and minor Cr-rich spinel (spl). Garnets are mostly porphyroblastic and vary in size (3–10 mm) and abundance (~5–15 vol%). Olivine shows a wide range of Fo values (i.e., Mg#, Mg/[Mg + Fe2+] = 0.84–0.91) and constitutes 40–60 vol% of the rock. Opx and cpx take ~10–30 and 5–15 vol% of the rock, respectively. Fine-grained Cr-rich spinel (Cr#, [Cr/Cr + Al] = 0.60–0.69) is scattered fairly uniformly both in the matrix and as inclusions of major silicate minerals. Al-in-opx geobarometry (Brey and Köhler, 1990) and Grt-Ol geothermometry (O’Neill and Wood, 1979) yield P = 5.0–6.5 GPa and T = 960–1040 °C for the garnet lherzolite.

3.1.2. Garnet-bearing dunite

The garnet-bearing dunite occurs either as layers varying in thickness from 10’s of cm to up to 2 m within the garnet lherzolite or as rhythmic bands that vary gradually from garnet-bearing dunite to harzburgite to garnet lherzolite. Garnet content varies widely in different layers. The rock is medium-grained and has an equigranular texture dominated by olivine (Fo90.6–92.0) (>90 vol%), plus variable amounts of garnet, opx (Mg# = 0.90–0.92), and cpx (Mg# = 0.94–0.96). Garnets are porphyroblastic and Mg-rich (69–75 mol% pyrope, 11–18% almandine, 3–8% grossular, 0.8–2.0% spessartine and 3–6% uvarovite). Fine-grained Cr-spinel (Cr# = 0.61–0.65) occurs as a product of decompression-induced breakdown of previous high-Cr garnet and pyroxenes. Al-in-opx geobarometry (Brey and Köhler, 1990) and Grt-Ol geothermometry (O’Neill and Wood, 1979) yield P–T conditions of P = 4.6–5.3 GPa and T = 980–1130 °C.
3.1.3. Garnet-free dunite

Garnet-free dunite occurs apparently as layers and/or lenses varying in thickness of up to 10 m with brown-colored weathering surfaces distinguished from black-colored garnet lherzolite and garnet-bearing dunite (Fig. 2b). It is medium-grained, dominated by strongly-serpentinized olivine (>90 vol%) with minor opx and Cr-rich spinel. Magnetites are precipitated at the boundaries of these serpentinized olivine crystals and show a triple-junction texture. Olivine contains higher Fo contents ranging 0.924–0.937, these serpentinized olivine crystals and show a triple-junction texture. Olivine contains higher Fo contents ranging 0.924–0.937, while spinel has higher Cr	extsuperscript{a} (0.66–0.73) than that in garnet lherzolite.

3.1.4. Garnet pyroxenite

The garnet pyroxenite is a minor component, occurring as interlayers with the garnet peridotite (Fig. 2d), or as dikes cross-cutting the apparent layering of the massif (Fig. 2e). Most samples are fresh with pink garnet and pale-green pyroxene conspicuous in the field (Fig. 2f). The constituent phases are garnet (20–30 vol%), opx (5–10%), cpx (40–60%) and phlogopite (2–5%) with no olivine observed. It shows a fairly uniform medium-grained granular texture. The garnet is also Mg-rich (62–68 mol% pyrope, 21–24% almandine, 9.5–11% grossular, <1% spessartine, 0.8–1.5% uvarovite). It shows a fairly uniform medium-grained granular texture. Most garnets are rimmed with a kelyphitic opx + cpx + spl assemblage and some break down to granular-textured high-Al opx, cpx and Al-spl, which are characteristic decomposition features. These observations suggest that these rocks have also once equilibrated at high pressures. Their occurrences as dikelets, lack of olivine, low MgO (~18%), low Mg	extsuperscript{a} (~0.81), and the presence of minor phlogopite are all consistent with the garnet pyroxenite being cumulate from more evolved mantle wedge melts (Song et al., 2007a,b).

3.2. Oceanic harzburgite and cumulate in the North Qaidam UHP belt

3.2.1. Ophiolite-like sequence in Ye maman section (Section A) of North Dulan belt

Garnet-free, strongly serpentinized peridotites also occur in the North Qaidam UHPM belt, as blocks of varying size. Song et al. (2003b) noted that an 80-m-thick garnet-free peridotite block occurs with garnet-bearing pyroxenite and eclogite in the Ye maman cross-section (Section A in Fig. 4). The garnet pyroxenite was interpreted to be an ultramafic cumulate with high MgO (18.8 wt%), Cr (1095 ppm) and Ni (333 ppm), while eclogite blocks are geochemically similar to present-day N-type to E-type MORB. The rock assemblage most likely represents segments of an oceanic lithosphere (i.e., ophiolitic) from mantle peridotite to Mg-rich cumulate, Ca-rich gabbro, and to basaltic lavas. The garnet-free peridotite block is strongly serpentinized with no relics of primary minerals preserved.

3.2.2. Ophiolite-like sequence in Section B (Shaliuhe Section)

We have reported another large ultramafic block (~400 x 800 m in size) along the Shaliuhe cross-section (Cross-section B) in the south Dulan belt (Zhang et al., 2005, 2008). Fig. 4 shows that the northern part of Section B consists of three rock types: (1) kyanite-eclogite, (2) serpentinized harzburgite and (3) garnet-bearing pyroxenite and olivine pyroxenite. The peridotite block is dark-colored, strongly serpentinized and is apparently conformable with kyanite-eclogite and pyroxenites (Fig. 5a–c). Most samples in this peridotite block were entirely serpentinized/altered and made up of serpentine, talc, anthophyllite etc. Magnetite occurs at boundaries of olivine pseudomorphs (Fig. 5d). Relic olivine, opx/opx pseudomorphs and chromeite were found in some samples (Fig. 5d–f).

The kyanite-eclogite retains a banded structure that is most probably at least partly inherited from original gabbroic cumulate bands (Fig. 6a). Geochemical analyses further reveal that this banded kyanite-eclogite has characteristics of cumulate gabbro (or more troctolitic) by high contents of Al2O3 (17.2–22.7 wt%), CaO (12.5–13.5 wt%), MgO (7.2–13.5 wt%), Cr (422–790 ppm), Ni, Sr, and low TiO2 and strong positive Eu anomalies (Eu 1.51–2.08) (Zhang et al., 2008).

Olivine pyroxenite and garnet-bearing pyroxenite also show banded structure (Fig. 6b). The garnet-bearing pyroxenite has retrograded into garnet amphibolite without plagioclase. The olivine pyroxenites shows massive coarse-grained inequigranular, cumulate-like textures with olivine occurring as intercumulus between cpx grains (Fig. 6c and d). The major primary minerals are cpx, opx and olivine. The cpx is overprinted by amphibole and the opx crystals are completely replaced by amphibole and talc. These rocks are best interpreted as an Mg-rich cumulate that forms the lower part of an ophiolitic cumulate sequence.

4. Mineralogy and mineral composition of the Lüliangshan and Shaliuhe peridotites

4.1. Garnet

As already noted, the Shaliuhe Peridotite, sensu stricto, does not contain garnet. Most garnet crystals in the Lüliangshan garnet peridotite and garnet-bearing dunite are porphyroblasts with varying size (3–10 mm across). Almost all the garnet crystals exhibit kelyphitized rims of cpx, opx and spinel aggregates interpreted as resulting from decompression (Fig. 7a and b), some being completely replaced by the kelyphitic opx + cpx + spl. Pargasitic amphiboles appear at the outer circle of the kelyphite, suggesting a late retrograde metamorphic event.

High concentrations of decompression-induced exsolution products have been observed in some porphyroblastic garnet crystals including densely packed rods of rutile, cpx, opx and sodic amphibole (Fig. 7c and d). The pyroxene exsolutions suggest that their parental garnet host crystals originally possessed excess silica, i.e., they were majoritic garnets that are only stable at depths in excess of 200 km (P > 7 GPa) (Song et al., 2004). The exsolution of rutile and sodic amphibole (Song et al., 2005a) further suggests that the inferred majoritic garnets also contain excess Ti, Na and hydroxyl, which are soluble in garnet only at very high pressures.
Electron microprobe (EMP) analysis shows that garnets from garnet lherzolite and dunite are Mg-rich with a wide range of pyrope (58–74 mol%), almandine (13–25%), grossular (4–10%), spessartine (0.9–1.8%) and uvarovite (2–5%) in different samples but have a quite homogeneous composition from core to rim for a given crystal. Fig. 8 shows garnet end-member contents as a function of whole-rock Mg# (i.e., Mg/[Mg + Fe2+]). As expected, the garnet pyrope component correlates positively whereas almandine correlates negatively with the whole-rock Mg#, suggests that garnet is in equilibrium with coexisting minerals in the rock (Fig. 8).
4.2. Olivine

4.2.1. Olivine from the Lüliangshan garnet peridotite

Olivine from the Lüliangshan garnet peridotite shows a large compositional variation in terms of Fo content (i.e., Mg\(^\#\) of olivine), which correlates positively with modal percentage of olivine. Olivine in garnet-free dunite has the highest Fo content of 0.927–0.937, which is slightly higher than that of garnet-bearing dunite (0.906–0.926). Fo content of olivine in garnet lherzolite, on the other hand, varies from 0.830 to 0.906. NiO concentrations vary from 0.34 to 0.55 wt%.

Ilmenite and Al-chromite rod- and needle-shaped exsolutions have been observed in some large olivine crystals (Fig. 7e and f), and are interpreted as resulting from decompression of the same phases previously dissolved in olivine structures stable at great depths of 200 km (Song et al., 2004).

4.2.2. Olivine from the Shaliuhe harzburgite and olivine pyroxenite

Two generations of olivine have been recognized in the Shaliuhe peridotite (Zhang et al., 2005): relic olivine (Ol\(^1\)) and metamorphic olivine (Ol\(^2\)). The first generation of olivine (Ol\(^1\)) occurs as small relic crystals among serpentines, and some crystals retain clear kink-bands (Fig. 5e). EMP analysis shows that the relic olivine has a narrow range of Fo content from 0.883 to 0.915 and relatively high NiO content from 0.28 to 0.46, which is consistent with the olivine compositions from the present-day abyssal peridotite (Fig. 9a). The
second generation (Ol2) occurs as large and dirty crystals with a dense cluster of tiny fluid inclusions. EMP analysis shows these olivines have extremely high Fo content of 0.943–0.966 but low NiO content (0.21–0.35 wt%) (Fig. 9a), which is consistent with an origin through recrystallization of serpentines during subsequent metamorphism (i.e., eclogite-facies?; Zhang et al., 2008). Olivine in the cumulate olivine pyroxenite has a narrow Fo range (0.88–0.90) and low NiO content (0.25–0.39 wt%).

4.3. Orthopyroxene

Opx in the Lüliangshan garnet peridotite also shows a large compositional variation in terms of Mg# (Fig. 9b). Opx from garnet-bearing dunite has high Mg# (0.94–0.96) whereas opx from garnet lherzolite has significantly lower Mg# (0.87–0.93). Opx Mg# values are positively correlated with Fo values of coexisting olivine. All opx crystals in the Lüliangshan garnet peridotite (including garnet lherzolite and garnet-bearing dunite) are extremely depleted in Al2O3. Al2O3 in opx from lherzolite is low (<0.66 wt%), and is slightly higher in dunite (0.55–0.73 wt%). Opx crystals from garnet pyroxenite have lower Mg# (0.86–0.90) and higher Al2O3 (0.88–1.17 wt%) than those from garnet peridotite.

High concentrations of decompression-induced exsolution needles were observed in some porphyroblastic opx (Fig. 10a). Energy-dispersive X-ray spectrometer (EDS) scanning reveals that those needles are Cr-rich spinel, suggesting that the original host opx was rich in Cr content.

Opx in the Shaliuhe harzburgite, on the other hand, occurs as relic crystals surrounded by talc (Tc) + anthophyllite (Ant) corona (Fig. 5f) and some occur as opx pseudomorphs completely replaced by talc and serpentine (Fig. 5e). High concentrations of cpx lamellae occur in the relic opx crystals, suggesting high CaO-content in the original host opx (Fig. 10b and c) that should be stable at magmatic conditions (>1100 °C, Lindley, 1983; Niu, 1999). EMP analysis shows that opx from the Shaliuhe harzburgite has high Al2O3 (2.69–4.63 wt%) and high and constant Mg# (0.908–0.917), which is within the compositional range of opx from present-day abyssal peridotites, but differs from opx in the Lüliangshan garnet peridotite (Fig. 9b).

4.4. Clinopyroxene

Cpx crystals in the Lüliangshan garnet peridotite are rich in Cr2O3 (0.6–1.6 wt%). High concentration of quartz, amphibole and Cr-rich spinel exsolution rods/lamellae in some cpx crystals (Fig. 10d) are interpreted as resulting from decompression (Song et al., 2004), which points to originally high-Si and Cr cpx at peak metamorphic conditions. Cpx Mg# varies from 0.91 to 0.96 and is positively correlated with Mg# of olivine and opx. Al2O3 varies from 1.13 to 3.19 wt%, and Na2O from 0.43 to 1.32 wt%.

Cpx in the Shaliuhe harzburgite occurs only as exsolution lamellae in opx crystals described above. No cpx relic crystals or pseudomorphs are observed in the Shaliuhe harzburgite. Cpx crystals do occur in the Shaliuhe cumulates (garnet-bearing pyroxenite and olivine pyroxenite) and have very high CaO (24.8–25.1 wt%).

4.5. Spinel

Spinel crystals in the Lüliangshan garnet peridotite are secondary and occur as fine-grained (5–100 µm) euhedral crystals scattered fairly uniformly both between, and as inclusions of, major
silicate minerals in garnet lherzolite and garnet-bearing dunite, or occur as exsolved lamellae in porphyroblastic olivine and cpx (Song et al., 2004, 2007a,b). Cr# (Cr/[Cr + Al]) of the spinel varies from 0.54 to 0.73 and correlates positively with whole-rock Mg# (Song et al., 2007a,b).

No Al-rich spinel but some chromite crystals are found in the Shaliuhe harzburgite.

5. Discussion

The petrogenesis of peridotite blocks in continental-type UHPM belts has long been discussed (Carswell et al., 1983; Medaris and Carswell, 1990; Zhang et al., 1994, 2000; Brueckner, 1998; Liou and Carswell, 2000; Medaris, 1999; Brueckner and Medaris, 2000). Much of the discussion, however, has focused on deep origins of garnet-bearing peridotites, whereas garnet-free, intensively serpentinized peridotite blocks are usually neglected. Protoliths of eclogites and ultramafic rocks in most UHPM terranes, such as the Dabie-Sulu of eastern China (Jahn, 1999) and Western Gneiss Region of Norway (Carswell et al., 2003), are believed to be the original mafic/ultramafic complexes hosted in the gneisses of the continental crust or fragments of the mantle wedge before and during continental subduction.

5.1. Petrogenesis of the Lüliangshan garnet peridotite

By interpreting hydrous minerals in olivine, cpx, and garnet as "inclusions", Yang and Powell (2008) suggested that the Lüliangshan garnet peridotite...
shan garnet peridotite was formerly mantle peridotite emplaced into the oceanic crust followed by serpentinization near the sea floor. They interpreted that these serpentinites were later transformed into garnet lherzolite and dunite during subduction to conditions of 3.0–3.5 GPa and 700 °C. The speculation by Yang and Powell (2008) differs from our previous studies (Song et al., 2004, 2005b, 2007a,b). The key difference lies in the interpretation of whether the hydrous minerals present in the aforementioned minerals are true “inclusions” or decompression products and their altercations.

This phenomenon described above is ubiquitous in the strongly-serpentinized Luliangshan peridotite. The stronger retrograde/serpentinization the sample has experienced, the more these hydrous phases are present in garnet, olivine and pyroxenes. As shown in Figs. 3 and 4 of Yang and Powell (2008), samples are strongly serpentinized and all “inclusions” are surrounded by cracks. Therefore, petrographic observation suggests that their so-called “inclusions” in garnet and olivine are actually not inclusions, but subsequent retrograde decompression/alteration products. Furthermore, both structure and mineral assemblage their “inclusions” in garnet are actually the same as the outer-rim symplectite, which suggests a rather late-stage decompression of garnet. Also, lizardite and antigorite are polymorphs of serpentines with the same composition but different structure. Their occurrence is closely associated with degrees of serpentinization, that is, lizardite usually occurs in the first stage of serpentinization, and antigorite appears as the degree of serpentinization increases (Deer et al., 1992). This should explain why the lizardite occurs as “inclusions” in olivine or cpx and antigorite in the matrix. Importantly, serpentinization always releases iron to form magnete/chromite, but the iron is difficult to re-enter the olivine’s structure during metamorphism. Therefore, the metamorphic olivine from former serpentinite should have very high Fo contents (for example, metamorphic olivine with Fo 94–97 in the Shaliuhe oceanic harzburgite, see above). If the Qaidam garnet peridotite was metamorphosed from a former serpentinized body, all olivines in the matric (but not the relic inclusion) should have very high Fo values (>95 mol%), but this is not the case. In fact all the olivines have a wide Fo range from 83 to 93. It is also noteworthy that major mineral and whole-rock compositions in different rock types reveal that the Qaidam garnet peridotite is not an abyssal peridotite but an ultramafic cumulate (see below).

Whole-rock and mineral compositions show that the garnet peridotite massif from the North Qaidam UHPM belt resembles “Mg–Cr type” of Carswell et al. (1983). Field occurrences of these various rock types show obvious layering largely defined by modal variations of major constituent minerals (Grt, olivine, opx and cpx). Rhythmic crystallization bands of the protoliths can be inferred with confidence in the field. The interlaying relationship between garnet-bearing dunite and garnet lherzolite is also clear on the outcrop. Both field observations and the estimated low-pressure (spinel peridotite stability depths or shallower) modal mineralogy (Fig. 3) suggest that protoliths of the garnet-free dunite and garnet-bearing harzburgite may indeed have been harzburgite, probably representing the sub-arc lithospheric mantle (see below).

However, the protoliths of garnet lherzolite and garnet pyroxenite were likely magmatic cumulates, consistent with trace element systematics (Song et al., 2007a). They encompass a wide range of rock compositions equivalent to low-pressure magmatic cumulate assemblages of websterite, olivine websterite and lherz-
element characteristics of these rocks (Song et al., 2007a,b) indi-
tuores of subduction magmatism (e.g., Elliott et al., 1997; Ewart
ments (e.g., Cs, U, Pb and Sr), which are typical geochemical signa-
clude: (1) all rocks show relative depletion of HFSEs (Nb, Ta, Zr, Hf
fact have been
is hard to evaluate, but probably occurred in the sub-arc litho-
sphere where the mantle wedge-derived melts experienced cool-
and crystallization. The harzburgite, inferred to be protoliths
is associated with medium to high-temperature metamor-
phism during continental subduction, because during cold oceanic
subduction serpentine would be a stable phase and would not be
re-crystallized to olivine. The absence of garnet in the re-metamor-
phosed harzburgite is most probably caused by the low-Al2O3 bulk
composition despite the ultrahigh-pressure condition.

5.2. Petrogenesis of the oceanic-type harzburgite

As discussed above, the oceanic-type harzburgites in the North
Qaidam UHP belt are closely associated with eclogite-facies meta-
morphosed ultramafic to gabbroic cumulates, which allows us to
infer that these rock types constitute the lower most sections of
an oceanic lithospheric sequence. Fo in the relic olivine and
Al2O3 in the relict opx are significantly different from those in
the Lüliangshan garnet peridotite, but are very similar to pres-
tent-day abyssal harzburgites, suggesting that the oceanic-type
harzburgite represents mantle peridotite of the subducted oceanic
lithosphere.

The presence of the second generation of high-Fo (Fo = 94–
97 mol%) olivines (Ol1) suggests that the serpentinitized harzburgite
experienced a metamorphic event in which the serpentines were
re-metamorphosed into olivine. This metamorphic event was most
probably associated with medium to high-temperature metamor-
phism during continental subduction, because during cold oceanic
subduction serpentine would be a stable phase and would not be
re-crystallized to olivine. The absence of garnet in the re-metamor-
phosed harzburgite is most probably caused by the low-Al2O3 bulk
composition despite the ultrahigh-pressure condition.

5.3. Ages of the Lüliangshan garnet peridotite

Three major age groups have been determined by zircon U–Pb
SHRIMP geochronological studies from the Lüliangshan garnet
lherzolite, garnet-bearing dunite and garnet pyroxenite (Song et al.,
2005a). (1) Cores of most crystals, whose oscillatory zoning
morphology and rare earth element (REE) systematics (i.e., very
high [Lu/Sm]CN = 88–230) suggest a magmatic origin, yielded ages
of 484–444 Ma (weighted mean age, 457 ± 22 Ma), consistent with
the magmatic cumulate origin of their protoliths. (2) The mantle
portions of zircon crystals that contains inclusions of garnet,
pyroxene, olivine and diamond gave ages of 435–414 Ma with a
mean of 423 ± 5 Ma, and are therefore interpreted to record the
time of ultrahigh-pressure metamorphism (UHPM) at depths
greater than 200 km in a continental-type subduction zone. (3)
The near-rim portions of zircon crystals yielded ages of 402–384 Ma (mean age 397 ± 6 Ma), which are thought to represent the retrograde event during exhumation.

5.4. Ages of the Shaliuhe ophiolite suit

The oceanic harzburgites, on the other hand, have no zircons because of their highly depleted compositions. Therefore, it is difficult to determine both magmatic and metamorphic ages of the harzburgite itself. Field relationship between the harzburgite and the associated UHP ultramafic to mafic cumulates (including Ky-eclogite in the Shaliuhe cross-section) and the OIB- and MORB-affinity of the eclogite suggests they belonged to an ophiolitic succession (Song et al., 2003a,b; Zhang et al., 2005, 2008). Eclogites in the north Dulan sub-belt give SHRIMP zircon U–Pb age of 457 ± 7 Ma (Song et al., 2006) and garnet-omphacite-whole-rock Sm–Nd ages of 458 ± 10 Ma and 459 ± 3 Ma (Song et al., 2003a,b), suggesting that eclogite-facies metamorphism occurred at ~460 Ma, which was overprinted to various extents by late-stage (UHP?) metamorphism (Song et al., 2003a,b; Mattinson et al., 2006).

SHRIMP U–Pb dating, in combination with cathodoluminescent (CL) imaging analysis, reveals that zircon separates from a banded kyanite-eclogite sample in the Shaliuhe section have three groups of ages (Zhang et al., 2008). The relic cores from nine zircon grains yield ages of 500–549 Ma, which, marked with magmatic oscillatory zoning and high Th/U ratios (0.98–1.38), should represent the time of cumulate crystallization beneath the inferred ocean ridge and therefore date the formation age of the ophiolite suite.

Fourteen analyses of the metamorphic mantle portions of the zircon grains give ages ranging from 484 Ma to 436 Ma with a mean at 450 ± 7 Ma and five bright luminescent rims yield ages of 424–430 Ma with a mean at 426 Ma.

The UHP metamorphic ages of the North Qaidam UHPM belt were further corroborated by SHRIMP ages of coesite-bearing zircon grains from the pelitic gneisses (423 ± 6 Ma, Song et al., 2006) and diamond-bearing metamorphic zircon grains from the Lüliangshan garnet lherzolite and garnet-bearing dunite (423 ± 5 Ma, Song et al., 2005b). These ages are consistent with the metamorphic ages of eclogite samples (422–432 Ma, Mattinson et al., 2006). The exhumed garnet peridotites clearly experienced mantle depths in excess of 200 km, whereas the exhumed granitic/pelitic gneisses (supra-crustal rocks) and eclogites would seem to have reached mantle depths no less than ~100 km. The differences in both metamorphic ages and pressure conditions may provide clues concerning the history of oceanic lithosphere subduction, continental subduction/collision, and ultimate exhumation in the northern margin of the Tibetan Plateau in the Paleozoic.

5.5. Tectonic evolution of the two types of peridotites

Petrological and geochemical data, together with age data, reveal that some of the protoliths of the bulk Lüliangshan garnet peridotite within the North Qaidam UHP belt are of cumulate origin from a high-Mg magma in an arc environment. Ultrahigh-pressure metamorphism of the garnet peridotite to depths greater than 200 km was closely associated with the subduction of the enclosing continental crust. On the other hand, the presence of Early
Paleozoic oceanic harzburgite and ophiolite suits within the North Qaidam rocks demonstrates the likelihood of oceanic subduction prior to the continental subduction and collision. If these bodies are indeed derived from oceanic lithosphere (both crustal and mantle sections), it would suggest that at least some eclogite and peridotite blocks within gneisses may not be “in situ”. Therefore, we propose a four-stage tectonic evolution model for the two types of peridotite blocks in the North Qaidam UHPM belt. Stage I (~549–500 Ma): The oceanic lithosphere of the “Qilian Ocean” were spreading and started to subduct between the Qaidam–Qilian block, a fragment of the Rodinia super-continent, and the North China Craton (Fig. 11a). Stage II (~460 Ma): Eclogite-facies metamorphism and dehydration of subducted oceanic lithosphere (eclogite-facies metamorphic stage, Song et al., 2006; Mattinson et al., 2006) caused mantle wedge partial melting and high-Mg melt generation in a sub-arc environment; cooling-induced crystallization of these melts led to the formation of the cumulate assemblage in the sub-arc lithospheric mantle in the spinel peridotite stability field at about 460 Ma (Fig. 11b). Stage III: The subducting oceanic lithosphere slab induced mantle wedge corner flow that transported the cumulate peridotite body deep into the mantle in the subduction zone. Stage IV: The subsequent subduction of continental crust captured the peridotite body and carried it to depths in excess of 200 km where it underwent UHP metamorphism at about 420–430 Ma before being exhumed with the supracrustal felsic gneisses to the middle-crust level at about 400 Ma (Fig. 11c).

Acknowledgements

We thank Hannes Brueckner and Ruth Y. Zhang for their constructive review comments, which led to a better presentation of the final product. This study was supported by National Natural Science Foundation of China (Grant Nos. 40773012, 40825007, 40572045), the Foundation for the Author of National Excellent Doctoral Dissertation of China (200531), the Major State Basic Research Development Projects (2009CB825007) and by the science foundation of State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences (GPMR200632).

References

