Petrogenesis of Cretaceous (133–84 Ma) intermediate dykes and host granites in southeastern China: Implications for lithospheric extension, continental crustal growth, and geodynamics of Palaeo-Pacific subduction

Jinbao Yang, Zhidan Zhao, Qingye Hou, Yaoling Niu, Xuanxue Mo, Dan Sheng, Lili Wang

A R T I C L E I N F O

Article history:
Received 17 August 2017
Accepted 29 October 2017
Available online 04 November 2017

Keywords:
Cretaceous
Granite
Dyke
Petrogenesis
Subduction
Southeastern China

A B S T R A C T

This paper presents U-Pb zircon geochronology, petrology, and major and trace element, Sr-Nd and zircon Hf isotopic geochemistry of Cretaceous granites and intermediate dykes in the Quanzhou and Xiamen regions of southeastern China. These data are used to investigate igneous petrogenesis and Cretaceous tectonic evolution, and interpret the geodynamics of Palaeo-Pacific slab subduction. Granites in Quanzhou and Xiamen range in age from 133 Ma to 87 Ma, have high SiO$_2$ and K$_2$O contents, low abundances in P$_2$O$_5$, and an A/CNK index that ranges from 0.97 to 1.09, indicating that they are high-K calc-alkaline metaluminous I-type rocks. Slightly negative εNd (t) values (−1.2 to −4.4), young Nd model ages (0.87 Ga to 1.20 Ga) and positive εHf (t) values (−0.5 to +9.9) of zircon grains indicate that the granites were derived from magmas that melted amphibolite in the middle-lower crust, and which may have assimilated country rocks during emplacement in shallow chambers. The intermediate dykes have no genetic link to the granites and magma mixing was negligible. Eight dyke samples have low SiO$_2$ and high MgO, Ni and Cr contents. Negative εNd (t) values (−1.5 to −2.7) and positive εHf (t) values (2.7 to 7.6) suggest that the dykes were derived from residual basic lower crust after mafic-crystal accumulation. Two samples of adakite-like dykes are characterised by high Sr/Y ratios (89 to 100) and high SiO$_2$, low K$_2$O, Ni, Cr contents. In combination with slightly negative εNd (t) values (−1.7 to −1.8) and positive εHf (t) values (2.9 to 4.3), the adakite-like dykes were derived from cumulate basic lower crust which had a mixed source between depleted mantle- and crust-derived melts. Based on our data, combined with previously published work, we suggest that extension-induced middle-lower crustal melting and underplating of mantle-derived basaltic melts were the principal driving mechanisms for Cretaceous granitic magmatism in coastal Fujian Province. Extension was related to subduction retreat whereas steep slab subduction caused underplating of mantle-derived basaltic melts. These processes were coupled and mainly responsible for the tectonic transition during the Cretaceous from compression to extension in the coastal belt of the Cathaysia Plate.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Granites have long been recognised to play a central role in the evolution and growth of continental crust. However, these subduction-

Sparks, 2002; Bergantz, 1989; Huppert and Sparks, 1988; Petford and Gallagher, 2001), for example by the partial melting of the mantle wedge, triggered by fluids from the subducting oceanic slab, or of underplated basaltic magma.

Granites of various ages are distributed throughout southeastern China, but Mesozoic granites of the Cathaysia Plate (Fig. 1) in particular have provided important constraints on petrogenetic models of Palaeo-Pacific slab subduction (e.g., Jahn et al., 1990; Kliment, 1983; Li et al., 2007; Li et al., 2014; Li and Li, 2007; Meng et al., 2012; Niu, 2014; Zhou et al., 2006; Zhou and Li, 2000). However, these subduction-
based models, are controversial because there is a range of hypotheses, namely normal subduction (Jahn et al., 1990; Klimetz, 1983), flat-slab subduction (Li et al., 2007; Li and Li, 2007; Meng et al., 2012), changing-angle subduction (Zhou and Li, 2000) and subduction retreat (Niu, 2014). Most research has focused on Cretaceous granites of the coastal Fujian Province (e.g., Chen et al., 2004; Chen et al., 2013, 2014; Li et al., 2012a; Qiu et al., 2012; Zhao et al., 2012). The study by Dong et al. (2011), that only discussed the temporal and spatial relationships between two mafic dykes and host granites, and is therefore deficient despite there being an established spatial relationship between mafic dykes and the granites. In contrast, there has been little research on granites of the Quanzhou and Xiamen regions (Li et al., 2012a).

The purpose of this paper is to document the evolution of the coastal granitoid belt using high quality U-Pb zircon dating and zircon Hf isotopic analyses, bulk-rock major and trace-element compositions, and Sr-Nd isotopic analyses of intermediate dykes and their host granites in Quanzhou and Xiamen, in order to improve our understanding of the nature of the middle-lower crust and Cretaceous crust-mantle interaction in coastal Fujian Province, southeastern China. Complementing previous studies, this study highlights the temporal and spatial distribution of Cretaceous magmatism and the significant subduction polarity of crustal rocks upon the subducted Palaeo-Pacific slab, and provides an enhanced understanding of Cretaceous lithospheric extension, crustal growth, and trench/subduction retreat.

2. Regional geology

The South China Block (SCB) comprises the Yangtze Craton in the northwest and the Cathaysia Block in the southeast (Fig. 1), which are separated by the Shaoxing-Jiangshan-Pingxiang Fault Zone (SJPF) (Shu et al., 2009; Wang and Shu, 2012) and characterised by multistage tectono-magmatic events (Jahn, 1974; Zhou et al., 2006; Zhou and Li, 2000). Mesozoic igneous rocks are predominately distributed in the part of the Cathaysia Block that was referred to by Zhou et al. (2006) as “the southeast region of the SCB (SE-SCB)”, with a total outcrop area of nearly 218,090 km², and outcrop-area percentages of granitoids versus volcanic rocks of respectively 58.4% (127,300 km²) and 41.6% (90,790 km²). More than 90% of Mesozoic magmatic rocks in the SE-SCB are felsic in composition, with only a small volume being basic. Mesozoic magmatism significantly increases in volume and becomes younger from inland to coastal regions (Zhou, 2007; Zhou et al., 2006).

Six large-scale fault zones (FZs) cross the SE-SCB (Fig. 1), namely: 1) the NE-trending Changle-Nan’ao FZ (CNF), 2) the NE-trending Zhenghe-Dapu FZ (ZDF), 3) the close-to NS-trending Ganjiang FZ (GF), 4) the NE-trending Sihui-Wuchuan FZ (SWF) (Shu et al., 2009), 5) the NE-trending Guangchang-Xunwu FZ (GXF), and 6) the NE-trending Ningyuan-Jianghua FZ (NJF) (Zheng et al., 2004). The GF is a sinistral fault whereas the CNF is a sinistral ductile shear. Shear deformation associated with the CNF has been dated at 120–100 Ma, by 40Ar/39Ar on muscovite from mica-schist (Wang and Lu, 2000), and is related to oblique subduction of the Kula Plate (Palaeo-Pacific) (Charvet et al.,...
The Xiamen Pluton (~60 km²) is composed mainly of monzogranite and intruded by intermediate dykes (Fig. 2d), and comprise monzogranite, subduction of a Palaeo-Pacific regarded to have been an active continental margin associated with evolution of the area, the regional geodynamic setting is generally A-type granites) occurred during the Jurassic-Cretaceous. Despite a extension- and arc-related magmatism (e.g., bimodal volcanic rocks and extension regimes associated respectively with Caledonian and Indosinian orogenesis (Li et al., 2012b; Zhou et al., 2006). In contrast, an extensional tectonic regime prevailed in Fujian Province at the same time, whereas extension- and arc-related magmatism (e.g., bimodal volcanic rocks and A-type granites) occurred during the Jurassic-Cretaceous. Despite a long-standing controversy on the Late Mesozoic tectono-magmatic evolution of the area, the regional geodynamic setting is generally regarded to have been an active continental margin associated with subduction of a Palaeo-Pacific slab (Li et al., 2007; Li et al., 2014; Wang et al., 2013; Zhou et al., 2006; Zhou and Chen, 2001; Zhou and Li, 2000).

3. Field observation and petrography

This study focuses on the Mesozoic granites and intermediate dykes of the Quanzhou and Xiamen regions, which are located in coastal Fujian Province and includes the Zhangban, Huian, Sidu, Damaoan and Xiamen (i.e., Xiamen Island) plutons (Fig. 1; Fig. 2a, b). The plutons in Quanzhou have a total exposed area of ~600 km² (Fig. 2a), are intruded by intermediate dykes (Fig. 2d), and comprise monzogranite, fine-grained granite, biotite-bearing granite, and minor granite porphyry. The Xiamen Pluton (~60 km²) is composed mainly of monzogranite and biotite-bearing granite (Fig. 2b), and is intruded by near-vertical intermediate dykes (Fig. 2c). All the sampled dykes have a NE-trending strike, parallel to the coastline, as also described by Chen et al. (2002). Furthermore, there are more minor gabbroic intrusions, widespread dynamic-metamorphic rocks (T-J), and late Jurassic intermediate-felsic pyroclastic and volcaniclastic rocks interlayered with mudstone, sandstone, and siliceous rocks (f–s) in both regions (Fig. 2a, b) (e.g., in Houzhu and Songyu). The dynamic-metamorphic rocks (T-J) are leptynite, which is composed of biotite, plagioclase, K-feldspar, and quartz, and interpreted to have originally been intermediate-felsic volcanic or volcaniclastic rock (FJBGMR, 1985).

Thirty-three samples were collected from the two study areas, comprising ten intermediate dykes and twenty-three granites. Porphyritic intermediate rocks are characterised mainly by distinctive sets of phenocrysts. Dioritic porphyries have a phenocryst assemblage of plagioclase (~60%), hornblende (~35%) and quartz (~25%) (Fig. 3a), whereas some sample shaves euhedral phenocrysts of sandine (Fig. 3b). Gabbric dioritic porphyries contain calcite amygdales and phenocrysts of clinopyroxene and plagioclase set in a glassy groundmass (Fig. 3c).

Granite porphyry is characterised by phenocrysts of quartz (~50%), with embayed grain boundaries suggesting resorption, and of plagioclase (~45%), with oscillatory concentric zoning, and biotite (~5%) (Fig. 3d). Biotite-bearing granite is composed of K-feldspar (25% to 30%), plagioclase (30% to 35%), quartz (~25%), biotite (~4%), and muscovite (~3%) with minor zircon and Fe-Ti oxides (Fig. 3e). Monzogranite mainly comprises K-feldspar (35% to 40%), plagioclase (30% to 35%), with common oscillatory zoning, quartz (~25%), and biotite (~5%), whereas K- and Na-feldspars occasionally occur as perthite (Fig. 3f, g).

4. Analytical methods

4.1. LA-ICP-MS U-Pb zircon dating

Nine granite samples and three dyke samples were selected for U-Pb zircon dating. Zircon grains were separated via gravity, magnetic, heavy liquid separation techniques in the Laboratory of the Geological Team of Hebei Province, China. Cathodoluminescence (CL) images were obtained at the Institute of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS), to examine the internal structure of individual zircon grains, and for the selection of sites for zircon isotope analyses.

Zircon grain 91500 was used as an external standard for the U-Pb dating and was analysed twice every five analyses. Time-dependent drifts of the U-Th-Pb isotopic ratios were corrected using a linear interpolation (with time) for every five analyses according to the variations of the zircon grain 91500 (i.e., 2 zircon grains of 91500 + 6 samples + 2 zircon grains of 91500) (Liu et al., 2010b). The preferred U-Th-Pb isotopic ratios used for zircon grain 91500 are from Wiedenbeck et al. (1995). The uncertainty of preferred values for the external standard zircon grain 91500 was propagated to the final results from the samples. Common lead was corrected for using the correction function of Andersen (2002). The program ISOPLOT (version 3.0) (Ludwig, 2003) was used for plotting Concordia diagrams and age spectra, and for age calculations. Uncertainties in individual analyses are reported at 1σ; weighted mean ages for pooled 206Pb/238U results are reported at 2σ. The U-Pb zircon isotopic data are presented in Table S1.

4.2. Major and trace elements geochemical analyses

Bulk-rock major element compositions were determined by inductive coupled plasma-atomic emission spectroscopy (ICP-AES) (Prodigy) at the GPMR, China University of Geosciences, Beijing. Operating procedures are described by Song et al. (2010). The reproducibility deduced from replicate analyses is typically better than 1% with the exception of TiO₂ (~1.5%) and P₂O₅ (~2.0%). Trace-element compositions (including rare earth elements) were analysed by ICP-MS (Agilent 7500a) after sample powders were digested by HF and HNO₃ in Teflon bombs at the GPMR, China University of Geosciences, Wuhan, China. The detailed sample-digesting procedure for ICP-MS analyses and analytical precision and accuracy for trace elements are as presented by Liu et al. (2008b). Major and trace element geochemical data are presented in Table S2.

4.3. Bulk-rock Rb-Sr and Sm-Nd isotopic analyses

Bulk-rock Sr and Nd isotopic compositions were determined using a Finnigan MAT-261 multi-collector mass spectrometer operated in static mode at GPMR, China University of Geosciences, Wuhan, China. Analytical details are given in Liu et al. (2004) and Rudnick et al.
(2004). Sr and Nd isotopic fractionation was normalised respectively to
$^{87}\text{Sr}/^{86}\text{Sr} = 0.11940$ and $^{144}\text{Nd}/^{144}\text{Nd} = 0.721900$. The average $^{143}\text{Nd}/^{144}\text{Nd}$ ratio of the JNd-1 standard (Geological Survey of Japan) measured during the sample runs is 0.512106 ± 7 (2σ, n = 8), and the average $^{87}\text{Sr}/^{86}\text{Sr}$ ratio of the NBS987 standard (US National Institute of Standards and Technology) is 0.710249 ± 9 (2σ, n = 8). Total procedural Sr and Nd blanks are respectively <1 ng and <50 pg. The Sr-Nd isotopic data are presented in Table S3.

4.4. In situ zircon Hf isotope analyses

Hafnium isotopic measurements were performed on the same spots or the same age domains used for age determinations of concordant grains, as guided by CL images. Analyses were conducted using a Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Germany) in combination with a Geolas 2005 excimer ArF laser ablation system (Lambda Physik, Göttingen, Germany) at the GPMR, China University of Geosciences, Wuhan, China. A "wire" signal smoothing device is included in this laser ablation system, by which smooth signals are produced even at very low laser repetition rates down to 1 Hz (Hu et al., 2012a). Detailed operating conditions for the laser ablation system and the MC-ICP-MS instrument and analytical method are the same as those described by Hu et al. (2012b).

The major limitation to accurate in situ zircon Hf isotope determination by LA-MC-ICP-MS is the very large isobaric interference from ^{176}Yb and, to a much lesser extent ^{176}Lu on ^{176}Hf (Woodhead et al., 2004). The under- or over-estimation of the v_{Yb} value would undoubtedly affect the accurate correction of ^{176}Yb and thus the determined $^{176}\text{Hf}/^{177}\text{Hf}$ ratio. We applied the directly obtained v_{Yb} value from the zircon sample itself in real-time (Liu et al., 2010a). The $^{176}\text{Hf}/^{177}\text{Hf}$ and $^{177}\text{Yb}/^{177}\text{Yb}$ ratios were used to calculate the mass bias of Hf (v_{Hf}) and Yb (v_{Yb}), which were normalised to $^{176}\text{Hf}/^{177}\text{Hf} = 0.7325$ and $^{177}\text{Yb}/^{177}\text{Yb} = 1.1248$ (Blichert-Toft et al., 1997) using an exponential correction for mass bias.

Interference of ^{176}Yb on ^{176}Hf was corrected by measuring the ^{176}Hf intensity of the interference-free ^{175}Lu isotope and using the recommended $^{176}\text{Hf}/^{177}\text{Hf} = 0.02656$ (Blichert-Toft et al., 1997) to calculate $^{176}\text{Hf}/^{177}\text{Hf}$. Similarly, the relatively minor interference of ^{176}Lu on ^{176}Hf was corrected by measuring the intensity of the interference-free ^{176}Lu isotope and using the recommended $^{176}\text{Lu}/^{177}\text{Lu} = 0.026656$ (Blichert-Toft et al., 1997) to calculate $^{176}\text{Lu}/^{177}\text{Lu}$. We used the mass bias of Yb (v_{Yb}) to calculate the mass fractionation of Lu because of their similar physicochemical properties. Off-line selection and integration of analytical signals, and mass bias calibrations were performed using ICPMSDataCal (Liu et al., 2010a). The zircon Lu-Hf isotopic data are given in Table S4.

5. Results

The compositional characteristics of intermediate dykes and granites are summarised in the following discussion in relation to the different analytical methods. Results of major and trace element compositions, U-Pb zircon dating, zircon Hf and Sr-Nd isotopic compositions, and previously published data are listed in Supplementary materials and Supplementary data. References cited with the geochemical data (Supplementary data) are listed in the Appendix.

5.1. U-Pb zircon geochronology

Three samples of intermediate dykes and nine granites were selected for U-Pb zircon dating; U-Pb age data and Concordia diagrams are presented respectively in Table S1 and Fig. 4. Analysed zircon grains are characterised by euhedral and elongate crystals that show significant oscillatory growth zoning in CL images, and by Th/U ratios ranging from 0.21 to 3.38, which imply a magmatic origin (Hoskin and Schaltegger, 2003).

5.1.1. Zhangban Pluton

Zircon grains from five samples of the Zhangban pluton, including biotite-bearing granite (QZ01, 07), monzogranite (QZ11) and intermediate dykes (QZ12, 14), were dated by LA-ICP-MS. Twenty-four spots selected for zircon grains from sample QZ01 produced ages ranging from 104.8 Ma to 100.3 Ma. Excluding six analyses which are discordant or of high error, the analyses give a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 102.3 ± 0.8 Ma (Fig. 4a). Eighteen spots from sample QZ07 were analysed, with 10 giving a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 92.1 ± 1.0 Ma (Fig. 4b). Eighteen spots were determined for zircon grains from sample QZ11, of which 13 give a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 87.1 ± 0.9 Ma (Fig. 4c). Eighteen spots selected for zircon grains from the intermediate dyke samples (QZ12, 14) were analysed and give weighted mean $^{206}\text{Pb}/^{238}\text{U}$ ages of 86.9 ± 0.9 Ma and 83.5 ± 0.9 Ma (Fig. 4d, e); rejected analyses are discordant or have high error.

5.1.2. Huian Pluton

For the Huian Pluton, only two monzogranite samples (QZ17, 22) were used for U-Pb LA-ICP-MS zircon dating. Eighteen zircon grains from sample QZ17 were analysed, with ten giving concordant ages from 108.7 Ma to 107.7 Ma and a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 108.4 ± 0.9 Ma (Fig. 4f). Eighteen zircon grains from sample QZ22 were analysed, with 11 discordant analyses giving a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 117.6 ± 1.5 Ma (Fig. 4g).

5.1.3. Sidu Pluton

Two monzogranite samples (QZ25, 55) from Sidu Pluton were selected for U-Pb LA-ICP-MS zircon dating. Fourteen zircon grains from sample QZ25 give a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 133.1 ± 1.3 Ma, with four analyses being discordant (Fig. 4h). Fifteen zircon grains of out of 18 selected from sample QZ55 give a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 91.4 ± 1.0 Ma, with the other three analyses being discordant (Fig. 4i).

5.1.4. Damaoshan Pluton

We selected only one monzogranite (QZ62) for dating from Damaoshan Pluton. Ten zircon analyses gave a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 111.3 ± 1.2 Ma (Fig. 4j), another three analyses were excluded because they are discordant, whereas the other five analyses gave older ages ranging from 144.7 Ma to 125.7 Ma, which we interpret to be of inherited origin. The weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 111.3 ± 1.2 Ma is interpreted to be the crystallization age of the Damaoshan monzogranite.

5.1.5. Xiamen Pluton

One monzogranite sample (XM07) and one intermediate dyke sample (XM08) were chosen for dating of the Xiamen Pluton. Fifteen spots selected from sample XM07 were analysed, giving a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 114.8 ± 1.8 Ma from 14 concordant analyses (Fig. 4k). Although 14 zircon grains were analysed from sample XM08, giving a weighted mean $^{206}\text{Pb}/^{238}\text{U}$ age of 90.7 ± 1.7 Ma (Fig. 4l), only one analysis is discordant. Discordance between $^{207}\text{Pb}/^{208}\text{Pb}$ and $^{206}\text{Pb}/^{238}\text{U}$ ratios in the analyses is derived from lower ^{207}Pb isotope contents, thereby causing the ICP-MS to give imprecise $^{207}\text{Pb}/^{208}\text{Pb}$ ratios. Despite the discordant set of analyses, the mean $^{206}\text{Pb}/^{238}\text{U}$ age is interpreted to record the crystallization age of this intermediate dyke.
5.2. Major and trace element geochemistry

Geochemical analyses of 33 samples (see Table S2) combined with previously published data (see Supplementary data) document the regional scale geochemical characteristics of the coastal Fujian Province.

The plutonic total alkali-silica diagram (Fig. 5a) emphasizes the considerable variations of alkalis versus silica of the five plutons, and serves as a basis for nomenclature (Middlemost, 1994). The intermediate dykes sampled in this study show diverse geochemical compositions, with SiO$_2$ ranging from 55.1% to 64.4%. One sample of gabbroic diorite (QZ63, Mg$^+$ = 56) plots in the monzodiorite field owing to its high LOI value (4.3%), which is compatible with the presence of calcite amygdaloids seen in thin-section (Fig. 3c). Similarly, quartz and plagioclase phenocrysts (Fig. 3a) in the other two dioritic dyke samples (QZ12, 14) result in the sample plotting in the granodiorite field. Most of sampled intermediate dykes are medium-K to high-K calc-alkaline rocks (Fig. 5b), and are metaluminous with A/CNK ratios (molar ratio $\text{Al}_2\text{O}_3/[ext{CaO} + \text{K}_2\text{O} + \text{Na}_2\text{O}]$) ranging from 0.65 to 1.09 (Fig. 5c).

The majority of granites sampled in this study are characterised by a high range in SiO$_2$ from 70.2% to 78.8% and in K$_2$O from 3.1% to 5.3%, indicating that they are high-K calc-alkaline rocks (Fig. 5a, b), but they have low abundances in TiO$_2$, Fe$_2$O$_3$, MnO, MgO, CaO and P$_2$O$_5$. The abundance of Al$_2$O$_3$ ranges from 12.2% to 14.9%. Excluding QZ07, the range in A/CNK index from 0.97 to 1.09 establishes that these rocks are metaluminous (Fig. 5c).
Chondrite-normalised rare-earth elements (REEs) and primitive mantle normalised trace-element patterns are shown in Fig. 6. The former invariably show light rare-earth element (LREEs) enrichment and insignificant negative europium anomalies (Eu/Eu* = 0.85 to 0.95) for all intermediate dyke rocks (Fig. 6a). In the primitive mantle normalised variation diagram (Fig. 6b), all intermediate dyke rocks show characteristic negative anomalies in Th, Nb, Ta, and Ti, and positive anomalies for U, Pb, Sr, Zr and Hf. Samples QZ12 and QZ14 have lower abundances in REEs and trace elements, and higher Sr/Y ratios (100 and 89, Fig. 8) than the other samples, which will be explained in the following discussion.

The granites (group 1) on Fig. 6c are enriched in LREEs relative to HREEs, with small to moderate negative europium anomalies (Eu/Eu* = 0.49 to 0.85) and flat HREEs patterns. The primitive mantle normalised variation diagram (Fig. 6d) shows that the granites are enriched in large ion lithophile elements (LILEs, such as Rb, Ba, Th, U,
K, Pb) and depleted in high field strength elements (HFSEs, such as Nb, Ta, Th, U, K, Pb) and depleted in high field strength elements (HFSEs, such as Nb, Ta, Th, U, K, Pb).

The fine-grained granites (group 2) are enriched in LREEs relative to HREEs with significant negative europium anomalies (Eu/Eu* = 0.17 to 0.49, except for QZ19) and inverse HREEs patterns (except for QZ05) (Fig. 6e). On a primitive mantle normalised variation diagram (Fig. 6f), all the fine-grained granites are enriched in LILEs (Rb, Ba, Sr, Th, U, K, Pb) and seriously depleted in HFSEs (Nb, Ta, Th).

5.3. Sr-Nd isotopic geochemistry

Bulk-rock Sr-Nd isotopic compositions of representative samples from QZ and XM are listed in Table S3 and plotted on Fig. 7a, b. Initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratios, and $\varepsilon_{\text{Nd}}(t)$ values have been calculated using ages obtained in this study. All the granites have initial $^{87}\text{Sr}/^{86}\text{Sr}$ ratios of 0.704817 to 0.706108 and $\varepsilon_{\text{Nd}}(t)$ values of -1.2 to -4.4, with Nd model ages ranging from 0.87 Ga to 1.20 Ga. The intermediate dykes have similar Sr-Nd isotopic compositions ($^{87}\text{Sr}/^{86}\text{Sr}$ = 0.705659 to 0.706223; $\varepsilon_{\text{Nd}}(t)$ = -1.2 to -2.7), with Nd model ages ranging from 0.92 Ga to 1.14 Ga.

5.4. Zircon Hf isotope geochemistry

In situ Hf isotopic data of zircon grains from six granite samples and two intermediate dyke samples are listed in Table S4, and shown alongside previously published data in Fig. 7c. In situ zircon U-Pb ages were used to calculate $\varepsilon_{\text{Hf}}(t)$ values and Hf model ages. Two intermediate dykes (QZ12 and XM08) show positive $\varepsilon_{\text{Hf}}(t)$ values ranging from $+2.7$ to $+7.6$, corresponding to Cambrian-Neoproterozoic Hf mantle model ages (T_{DM}) of 0.48 Ga to 0.67 Ga. Granites also gave positive $\varepsilon_{\text{Hf}}(t)$ values (-0.5 to +9.9), except for the $\varepsilon_{\text{Hf}}(t)$ values of sample QZ25 (-2.8 to +1.0), corresponding to Neoproterozoic-Mesoproterozoic Hf crust model ages of 0.54 Ga to 1.37 Ga. On the basis of published data, it appears that a mantle contribution to granites increased with decreasing zircon U-Pb ages. This spatial-temporal evolution is explained below.

6. Discussion

6.1. Temporal and spatial distribution of Cretaceous magmatism in Fujian Province

As Fig. 1 shows, most Middle-Late Jurassic igneous rocks are located within the Cathaysia Block whereas the great majority of Cretaceous igneous rocks are distributed along the coastal belt. In particular, there are vast areas of Cretaceous granites in coastal Fujian Province.

We have reviewed most of the published age-data (see Supplementary data) on the Cretaceous granites and associated basic-intermediate dykes. Generally, inland granites are older than coastal granites (Fig. 1), although magmatic stages can be preserved in the same pluton along the coastal belt (Fig. 8a). We suggest that the migration of granite magmatism from inland to coastal regions was the result of subduction retreat from the late Jurassic to the late Cretaceous. The age data indicate that the principal stage of granite magmatism occurred from 120 Ma to 80 Ma (Fig. 8b), and that basic-intermediate magmatism in these granites occurred between 120 Ma to 80 Ma (Fig. 8c). This implies that mantle-derived magmas contributed significantly to the crust over the peak magmatic period (i.e., 120 Ma to 80 Ma).

Five Cretaceous A-type granite plutons are exposed along the sinistral Changle-Nan’ao Fault Zone (CNF). Although the genesis of A-type granite is controversial, there is consensus that A-type granites relate to shallow level high-temperature and low-pressure conditions of the middle to upper crust, as determined by experimental petrology (Clements et al., 1986; Patiño Douce, 1997). Coupled with a mantle
contribution between 120 Ma to 80 Ma, the implication is that the Cretaceous tectonic setting of coastal Fujian Province was extensional.

6.2. Magmatic sources and petrogenesis

6.2.1. Granites

6.2.1.1. Sources of granite magmas. The subdivision of I-type (igneous source) and S-type (sedimentary source) granites was proposed by Chappell and White (1974), and subsequently applied world-wide. Granites studied here are characterised by high K$_2$O (to 5.3%), low FeO*/MgO ratios (2.6 to 6.7) (Fig. 9a) and A/CNK values (\sim1.1) (Fig. 5c), and mostly fall in the high-K calc-alkaline series (Fig. 5b). In addition, P$_2$O$_5$ decreases (\sim0.1%) with increasing SiO$_2$, because apatite attains saturation in metaluminous and slightly peraluminous magmas but has high solubility in strongly peraluminous melts (Wolf and London, 1994) (Fig. 9b). Yttrium and Th increase as Rb increases (Fig. 9c, d), thereby showing a typical I-type granite evolution trend (Chappell, 1999; Eby, 1990). Combined with field geology (Fig. 2a, b), we suggest that the widespread dynamic-metamorphic rocks (T-J) were at least a small portion of the source for the granites in this study. Consequently, the granites are typical high-K calc-alkaline I-type granites. Group 2 granites have significant negative anomalies of Eu, Ba, Sr, P and Ti on spidergrams (Fig. 6e, f), suggesting that the granites are highly fractionated I-types (Wu et al., 2003). Although granites in Quanzhou and Xiamen have four classifications based on their petrography, they are collectively characterised by low initial 87Sr/86Sr ratios, slightly negative ε_{Nd} (t) values (Table S3) and positive ε_{Hf} (t) values (Table S4), with the exception of sample QZ25. Low initial 87Sr/86Sr ratios (0.705 to 0.706) and slightly negative ε_{Nd} (t) values (\sim1.2 to \sim4.4) (Fig. 7a) with young Nd model ages (0.87 to 1.20 Ga) indicate that the mantle contributed to the formation of...
the granites, or that the granites were mainly derived from the melting of juvenile crust. Positive $\varepsilon_{\text{Hf}}(t)$ values (-0.5 to $+9.9$) and young Hf crust model ages (0.54 Ga to 1.21 Ga) establish that the granites were mainly derived from the partial melting of juvenile crustal sources. Sample QZ25 has more negative $\varepsilon_{\text{Nd}}(t)$ and lower negative $\varepsilon_{\text{Hf}}(t)$ values than the other granites, indicating that its source had a more ancient crustal composition.

6.2.1.2. Petrogenesis of granites. Published work in recent years has shown that granitic magmas can be formed in an extensional setting. In particular, granites in subduction-related settings are associated with the extension of the continental lithosphere and its underplating by basaltic magmas derived from the mantle (Chen et al., 2014; Li et al., 2014; Qiu et al., 2012; Wang and Shu, 2012; Zhou et al., 2006; Zhou and Li, 2000). As mentioned above, the relatively high $\varepsilon_{\text{Nd}}(t)$ values (-1.2 to -2.7), young Nd model ages (0.87 Ga to 1.20 Ga) and positive $\varepsilon_{\text{Hf}}(t)$ values (-0.5 to $+9.9$) of the granites, excluding sample QZ25, indicate that the granites contain a significant mantle component. The Nd-Hf isotopic compositions of the granites are homogeneous and this (Tables S3, S4 and Fig. 7a, b) further demonstrates that the granites were derived from the melting of juvenile crust (Bolhar et al., 2008). Sample QZ25 has low $\varepsilon_{\text{Nd}}(t)$ values (-4.4) and intermediate $\varepsilon_{\text{Hf}}(t)$ values (-2.8 to $+1.0$), suggesting that the granite crystallised from magma formed by mixing between crustal and mantle end-members (Fig. 7a, b).

Cumulate basic granulite xenoliths (CBGX, with a Sr-Nd isochron age of 115 Ma) from Qilin (Fig. 1) have the characteristics of depleted mantle (Fig. 7a), namely low K$_2$O (0.04% to 0.34%) and P$_2$O$_5$ (0.02% to 0.04%), and high CaO (9.9% to 14.7%). However, magmatic basic granulite xenoliths (MBGX) have similar Sr-Nd isotopic compositions (i.e., juvenile) to the granites, namely high K$_2$O (0.5% to 1.6%) and P$_2$O$_5$ (0.3% to 0.7%), and low CaO (6.6% to 8.7%) (Yu et al., 2003); in particular, REE patterns are similar to the granites. We suggest that fractional crystallization of a magma, with a source mixed between underplated basalt and lower crust, produced the magmatic basic granulite layer, above which amphibolite remains and makes up the composition of the middle-crust or the upper lower-crust (Fig. 11a). Consequently, we consider that the granites were formed from magmas that melted amphibolite, and assimilated country rocks during their emplacement in shallow-level chambers.

The $\varepsilon_{\text{Hf}}(t)$ values of the granites have an obvious linear trend, increasing with granite age, which become younger from inland to the coast (Fig. 7b). The Hf isotopic composition of zircon grains in granites records ages earlier than Sr-Nd isotopic compositions due to the high closure temperature of zircon. In addition, zircon Hf crustal model ages of the granites and the zircon Hf mantle model ages of the dykes...
imply there was a common mantle contribution to the crust between 120 Ma and 90 Ma, particularly in the granites which show an increasing trend during that period (Fig. 7c, d). Therefore, we suggest that the contribution from the mantle increased from 133 Ma to 84 Ma.

Considering the origin of the I-type granites studied here, it appears that an extensional setting for coastal Fujian Province played a crucial role in lithospheric evolution during Mesozoic subduction of the Palaeo-Pacific slab. This is supported by the results from the Sinoprobe-02-04 Project, whose conductivity characteristics of the magnetotelluric profile in the coastal area of southeastern China show thinned lithosphere and upwelling asthenosphere (Liu et al., 2012).

6.2.2. Dykes

6.2.2.1. The cross-cutting relationship between host rocks and dykes. The co-existence of basic-intermediate and felsic magmas appears compelling based on our field observations (Fig. 2c, d). The dykes have sharp, chilled contacts with their host granites and a gradational mixed magma zone is poorly defined. These relationships indicate that the host granites had a crystal content >80% before the intermediate magmas were injected along fractures to form continuous dykes, as explained by the four-stage model proposed by Barbarin and Didier (1992) and Barbarin (2005). This indicates that mixing between granite and dyke magmas did not occur. Furthermore, petrographic observations suggest that quartz and plagioclase xenocrysts did not crystallise from dyke magmas because of their resorbed margins (Fig. 3a), whereas our dating shows that the emplacement of dyke magmas (90 Ma to 84 Ma) slightly post-dates emplacement of the host granites (115 Ma to 87 Ma). However, samples QZ11 and QZ12 have similar ages (~87 Ma). Based on outcrop features of chilled margins with angular and flat joint surfaces that were created by plastic flow during cooling, we suggest that sample QZ12 is of a synplutonic dyke that invaded an unconsolidated, yet relatively cooler granitic host (QZ11) (Fig. S1). Furthermore, because zircon U-Pb ages have errors of between 1 and 2 million years, it is reasonable assume that the dyke and host granite have similar ages. Because of the relatively small volume of dyke magma, cooling was probably so rapid that there was limited opportunity for chemical interaction between the two magmas (cf. Wiebe, 1991). Consequently, the dykes have no genetic link to the granites and magma mixing was negligible.

6.2.2.2. Petrogenesis of dykes. Fractional crystallization within cooling basaltic magmas can generate mafic crystals and anorthites, which then accumulate in the lower part of the magma chamber (Bowen, 1922). The residual melt gradually enriches in silica and incompatible elements, such as K, Rb, Ba, U, Pb. Harker diagrams of selected major elements from the dyke samples show that the weight percentages of Na2O and Al2O3 increase with silica content (Fig. 10a, b), whereas the opposite occurs with CaO and MgO (Fig. 10c, d). These data therefore appear to conform to a fractional crystallization model. The decreasing content of K2O with decreasing silica content, however, is not the result of the fractional crystallization model (Fig. 5b), even if the values of all regional basic-intermediate dykes or plutons have increasing silica content. Therefore, the petrogenesis of the dykes cannot completely be explained by the fractional crystallization of a basalt magma derived from the melting of lithospheric mantle.

The intermediate ~90 Ma dykes from Xiamen have low MgO (2.9% to 4.2%), Ni (31 ppm to 72 ppm) and Cr (40 ppm to 96 ppm) and low SiO2 (55% to 58%), Al2O3 (16.8% to 17.2%) contents (Table S2), suggesting that their parental magmas were unlikely to have been directly derived from mantle sources. Their negative εNd(t) values and positive εHf(t) values suggest that their parental melts were not derived from enriched
mantle but formed by mixing of mantle-derived basaltic magma and crustal-derived melt (Fig. 7a, b). This is shown by high Nb/Ta ratios (17 to 20) and Th/Yb ratios (1.4 to 2.5), similar to the middle-lower crust, and by the Fe-Mg diagram (Fig. 11a, b, c). As described above, magmatic basic granulite xenoliths (MBGX) from Qilin have similar Sr-Nd isotopic compositions, enriched LILEs (Rb, Ba, U, K, Pb, Sr), OIB-like rare earth elements, and depleted HFSEs (Nb, Ta, Ti) like the dykes (Fig. 6a, b). Therefore, it appears that the Xiamen dykes were derived from residual basic lower crust after mafic crystal accumulation.

In addition, the dykes from Quanzhou, excluding samples QZ12 and QZ14, have similar geochemical characteristics to the Xiamen dykes, particularly samples QZ02 and QZ63. Nevertheless, the other samples have relative low Th/Yb ratios and high Nb/Yb ratios (Fig. 11b). Considering the geochemical similarity Xiamen dykes, we suggest that the Quanzhou dykes are products of the late melting stage of the same sources.

Samples QZ12 and QZ14 are characterised by high Sr/Y ratios, which are typical features of adakitic rocks (Fig. 11d). Adakites are defined by Defant and Drummond (1990) as rocks resulting from the partial melting of a subducted slab in the garnet stability field. Recent studies have shown that adakitic rocks can form by the partial melting of a subducted slab in the garnet stability field (Atherton and Petford, 1993; Chung et al., 2003; Condie, 2005; Sheppard et al., 2001; Wang et al., 2005), fractionation of mantle-derived primitive arc magma (Castillo et al., 1999; Macpherson et al., 2006; Richards and Kerrich, 2007; Rodríguez et al., 2007), and mixing between mantle- and crust-derived melts (Danyushevsky et al., 2008; Xu et al., 2012). The high Sr/Y ratios (89 to 100) and high SiO₂ (63.12%), low K₂O (1.5% to 1.6%), Ni (15 ppm to 16 ppm) and Cr (~20 ppm) contents of the adakitic samples indicate that the rocks were unlikely to have been derived from thickened crust (Moyen, 2009; Wang et al., 2005) or the fractionation of mantle-derived primitive arc magma. In combination with their slightly negative ε Nd (t) values (~1.7 to ~1.8) and positive ε Hf (t) values (2.9 to 4.3), we suggest that the adakitic rocks were derived from a mixed lower crust source, between depleted mantle- and crust-derived melts. The high content of Sr may derive from melting of plagioclase in the cumulate basic granulite xenoliths (CBGX), which have the features of depleted mantle (Yu et al., 2003).

6.3. Brief review on Cretaceous adakite-like rocks in coastal Fujian Province

Previously published work on Mesozoic granites and basic-intermediate dykes/plutons of coastal Fujian Province has documented some adakite-like rocks (see the samples identified by asterisks on the trace element sheets in Supplementary data and on Fig. 11d), comprising several basic-intermediate dykes/plutons and 12 granites. It appears that those granites or basic-intermediate dykes/plutons crystallised between 110 Ma and 90 Ma. The granites have been proposed to be derived from a mixed source comprising depleted mantle and crustal components (Fig. 7a, b; Li et al., 2012b; Qiu et al., 2012; Zhao et al., 2012). With regards to the petrogenesis of gabbroic plutons, Chen et al. (2004) suggested high Sr/Y gabbros formed from the dehydration melting of amphibolite, whereas the gabbros from Quanzhou and Tong’an were interpreted to have originated from mantle-derived
magmas contaminated by a crustal component (Li et al., 2012a; Zhou and Chen, 2001). In contrast, J.H. Zhao (2004) advocated that the Putian gabbroic intrusion had not experienced much crustal assimilation but rather metasomatism before its emplacement. Finally, high Sr/Y basic-intermediate dykes from Tuling and Meizhoudao were interpreted to be the products of mixed contributions from Palaeo-Pacific slab subduction and crust-mantle interaction (Dong et al., 2011; Yang et al., 2010a; J.H. Zhao, 2004). Although those authors derived different petrogenetic models from their geochemical results, Cretaceous lithospheric extension and subduction of the Palaeo-Pacific slab were emphasised.

6.4. Implications for Cretaceous lithospheric evolution

6.4.1. Cretaceous extensional setting

As discussed above, previously published work has suggested that granite can be formed in an extensional setting. In particular, granites emplaced in a subduction-related tectonic setting are associated with the extension of the overlying continental lithosphere and the underplating of basaltic magmas derived from the mantle (Chen et al., 2014; He and Xu, 2012; Li et al., 2014; Qiu et al., 2012; Wang and Shu, 2012; Yang et al., 2013; Zhou et al., 2006; Zhou and Li, 2000). The 105 Ma to 90 Ma A-type granites along the Changle-Nan’ao Fault Zone in the coastal Fujian Province (Fig. 8a) imply, based on petrology and experimental petrology (e.g., Clements et al., 1986; Patiño Douce, 1997), a high temperature, low pressure tectonic environment. In addition, comprehensive geochronological studies (by K-Ar and 40Ar/39Ar methods) of basic dykes and plutons in Fujian Province (J.H. Zhao, 2004) and in Guangdong Province (Li and McCulloch, 1998) divide the basic magmatism into five stages, namely: 140 Ma to 135 Ma, 125 Ma, 110 Ma to 105 Ma, 90 Ma to 85 Ma, and 75 Ma to 70 Ma. Furthermore, SHRIMP U-Pb zircon ages of basic dykes from Jinjiang, Tong’an and Meizhoudao in the coastal Fujian Province range from 96 Ma to 87 Ma (Dong et al., 2006, 2011; Yang et al., 2010b). These studies suggest that an extensional setting dominated Cretaceous magmatic-tectonic interaction in the coastal belt, which can also be linked to the Changle-Nan’ao Fault Zone (Shi and Zhang, 2010; Wang and Lu, 1997, 2000). In conjunction with the results of our work, we suggest that extension-induced middle-lower crustal melting and underplating by mantle-derived basaltic melts were the principal driving mechanisms for Cretaceous granitic magmatism in coastal Fujian Province. Fig. 12 is a schematic view of the tectonomagmatic scenario for the 120 Ma to 80 Ma magmatic stage. The later part of that stage may be related to sinistral strike-slip along the Changle-Nan’ao Fault Zone from 112 Ma to 95 Ma (Wang et al., 2013).

6.4.2. Cretaceous continental crust growth

Crustal growth is the process by which rocks of a depleted mantle composition are added to continental crust (Wu et al., 2007). Cretaceous granites in coastal Fujian Province comprise mainly I- and A-type (Chen et al., 2013, 2014; Li et al., 2012b; Qiu et al., 1999, 2000, 2012); whereas S-type granites are absent. All the granites studied here are I-type. Their isotopic geochemical characteristics imply a depleted mantle contribution to Cretaceous continental crust of the southeastern Cathaysia Plate. This study, in combination with previously published work, suggests that the period of depleted mantle contribution to the continental crust occurred between 120 Ma to 80 Ma. Growth of continental crust is inherently related to subduction-related processes, such that active continental margins are generally considered to be the principal sites for the formation of continental crust (Ernst, 2000; Middelmost, 1997; Oncken et al., 2006). The Cretaceous tectonic setting of the southeastern Cathaysia Plate was an active continental margin, thereby explaining why there was intense

![Fig. 10.](image-url)
magmatic activity of the mantle between 120 Ma to 80 Ma, as indicated by the isotope geochemistry reported here. Consequently, we consider that underplating basalt magmatism is the important mechanism for continental crust growth at subduction zones. Continental crust growth continued into the Cainozoic, for example during the formation of the Philippine Sea Plate (Yin, 2010). Crustal growth of the southeastern Cathaysia Plate was much younger than the 200 Ma to 150 Ma crustal growth of northeastern China (Wu et al., 2000), and this age difference relates to a different period of Palaeo-Pacific slab subduction.

6.4.3. Geodynamics of palaeo-Pacific slab subduction

Lithospheric growth associated with oceanic plate subduction under continental margins is triggered by dehydration of the sinking slab, so that regions surrounding the Pacific Ocean are a natural laboratory for lithospheric research. The Pacific slab under southeastern China is shown to be stagnant in the mantle transition zone on tomographic imagery (Huang and Zhao, 2006). Some studies consider that the transition-zone slab of the Palaeo-Pacific Plate beneath eastern China resulted from westward flat-subduction during the Mesozoic (e.g., Li et al., 2007; Li and Li, 2007; Meng et al., 2012). This model is unrealistic due to the lack of a driving force for flat-subduction and it is more likely that the slab was left behind as the result of western Pacific subduction retreat (Fig. 12) under gravity (Niu, 2014).

Since the beginning of the early Cretaceous (145 Ma), the dip angle of the subducting slab has increased (Zhou and Li, 2000). Fast subduction gave rise to incomplete dehydration and oceanic crust eclogitization was not exhaustive. During the late stage of the early Cretaceous and the early stage of the late Cretaceous (120 Ma to 80 Ma), the low density of the subducted slab mean that the slab could not sink into the lower mantle. Stable gravity in the mantle transition zone made the dip angle of subducted slab increase further, the response to which, at the crustal level, was trench retreat (Niu, 2014), which resulted in lithospheric extension.

However, if a subducting slab quickly reaches thermal equilibrium and thus passes below 660 km depth and enters the lower mantle, subduction retreat is slowed (Li et al., 2008). In contrast, the Palaeo-Pacific slab in the transition zone confirms a fast speed of subduction which produced a stagnant slab in the mantle transition zone. This interpretation is supported by a period (109 Ma to 90 Ma) of rapid subduction beneath southeastern China (Jahn, 1974). The temporal and spatial distribution of Cretaceous magmatism in Fujian Province, as discussed above, establishes a significant subduction retreat from inland to offshore as do the eHf(t) values. Hence, we conclude that fast trench/subduction retreat, which resulted in the extensional setting, and steep slab subduction, which resulted in the underplating of mantle-derived basaltic melts, were coupled and mainly responsible for the
Cretaceous tectonic transition from compression to extension in the coastal belt of southeastern China.

7. Conclusions

Main findings of the present study are summarised as follows.

1) The ages of granites and intermediate dykes range respectively from 133 Ma to 87 Ma and from 90 Ma to 84 Ma. Inland granitic magmatism is older than coastal granitic magmatism. The dykes do not have a genetic link with the granites, and magma mixing was negligible.

2) Similar elemental and isotopic geochemical characteristics of the granites indicate the granites were produced by the ascent of magma that melted from amphibolite in the middle-lower crust, and which may have assimilated country rocks during emplacement in a shallow chamber. Adakite-like dykes were derived from a source mixed between depleted mantle-derived and crust-derived melts. The high content of Sr originated from the melting of plagioclase in cumulate basic granulite xenoliths (CBGX), which have the features of depleted mantle. Other dykes were derived from residual basic lower crust after mantle crystals accumulation.

3) Extension-induced middle-lower crustal melting and underplating of mantle-derived basaltic melts are suggested as the principal driving mechanisms for Cretaceous granitic magmatism in coastal Fujian Province. The period of continental crust growth in the coastal Cathaysia Plate was between 120 Ma to 80 Ma, which is later than crustal growth (200 Ma to 150 Ma) recorded in northeastern China, and may have continued into the Cainozoic.

4) Fast subduction retreat produced the extensional setting, and the accompanying steep slab subduction caused underplating of mantle-derived basaltic melts. These tectonic processes were coupled and mainly responsible for the Cretaceous tectonic transition from compression to extension in the coastal belt of the Cathaysia Plate.

Acknowledgements

We thank editor Andrew Kerr, for handling this manuscript and two anonymous reviewers for constructive comments. We are grateful to Zhaochu Hu and Yongsheng Liu for guidance on zircon U–Pb dating, Hf isotope, and bulk-rock trace element analyses. We thank Hong Qin for her help during major element analysis. We also thank Yu Huang, Wenxia Li, Fanyi Meng and Yue Chen for their help during Sr-Nd isotope analyses. Bryan Krapez is thanked for help with English writing. This study was supported by Program SINOPROBE-04-02, the Special Funds for Sciences and Technology Research of Public Welfare Trades (No. 201011054), Guangxi National Natural Science Foundation of China (No. 2016GXNSFBA380070), and the research grant of Guangxi Key Laboratory of Hidden Metallic Ore Deposits Exploration (No. 15-140-27-13).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.lithos.2017.10.022.

Sheppard, S., Grif

