Research Article

Origin of magmatic harzburgite as a result of boninite magma evolution – An illustration using layered harzburgite-dunite cumulate from the Troodos ophiolite complex

Fangyu Shen a,b,c,d,⁎, Yaoling Niu a,b,c,e,⁎, Yanhong Chen b,e, Yajie Gao f, Xiaohong Wang a,c, Meng Duan a,c, Li Shan a,c,d

a Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
b Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
c Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
d University of Chinese Academy of Sciences, Beijing 100049, China
e School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
f Research School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia

ABSTRACT

Olivine (Ol) and orthopyroxene (Opx) are the primary liquidus phases of boninite in modern subduction settings and in many ophiolite complexes. It is thus straightforward to expect the formation of harzburgite cumulate resulting from boninite magma evolution. However, such magmatic harzburgite has been rarely studied. Here, we report the results of our study on such harzburgite from the Troodos ophiolite complex. The Troodos cumulate harzburgite (locally lherzolite) is characteristically interlayered with dunite, showing varying thickness on millimeter to decimeter scales, as the result of volumetrically varying multiple pulses of melt injection into the evolving magma chamber. We illustrate the development of the interlayered cumulate by phase equilibrium analysis. The parental melt of each pulse begins to crystallize olivine to form a dunite layer before reaching the Ol-Opx cotectic, along which Ol and Opx coprecipitate to form a harzburgite layer. Periodical replenishment will result in dunite-harzburgite interlayered cumulate. In cases when replenishment may be delayed, the melt along the Ol-Opx cotectic can evolve to the Ol-Opx-clinopyroxene (Cpx) eutectic to form harzburgite with some Cpx or lherzolite. The calculated melts in equilibrium with clinopyroxene in the cumulate are characteristic of boninite in major element compositional spaces. The calculated melts in equilibrium with Cpx and Opx in the cumulate share the same as, or identical to, trace element patterns of the Troodos boninite (both glasses and bulk-rock compositions). Petrological modeling of the boninite magma evolution shows a crystallization order of Ol, Opx, Cpx, plagioclase. Our study also emphasizes the importance in considering dunite-harzburgite/lherzolite cumulate when interpreting seismic structure of the crust in subduction settings, especially in rock sequences associated with subduction initiation thought to be indicated by boninite magmatism.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Harzburgite, dominated by olivine (Ol) and orthopyroxene (Opx), as mantle melting residue has been well understood (e.g., Dick et al., 1984; Jaques and Green, 1980; Niu, 1997, 2004), and as a cumulate constituent in layered intrusions has also been well studied (e.g., Cawthorn, 1996; Charlier et al., 2015). Because Ol and Opx are the primary liquidus phases of boninite in modern subduction settings and in many ophiolite complexes, it is expected that the boninite magma evolution will produce cumulate harzburgite. However, cumulate harzburgite as the result of boninite magma evolution has not been well documented and investigated. The cumulate harzburgite reported in layered intrusions was mostly ascribed to crystal settling or magma mixing in the magma chamber (e.g., Irvine and Smith, 1967; Raedeke and McCallam, 1984). On the basis of previous works and many years of our careful field observations, we have hypothesized that the ultramafic rock suites interlayered between dunite and harzburgite (locally lherzolite) in the Troodos Ophiolite complex must represent cumulate as the result of fractional crystallization of boninite magma evolutions. Indeed, boninite as dykes, veins and pillow lavas is widespread in the Troodos ophiolite complex (e.g. Cameron and Nisbet, 1979; Golowin et al., 2017; König et al., 2012).
2008; Osozawa et al., 2012; Pearce and Robinson, 2010; Woelki et al., 2018). To test this hypothesis, we carried out detailed petrography, mineralogy, and trace element geochemistry on both interlayered ultramafic suites and representative boninite samples from the Troodos ophiolite. These data, together with petrological modeling and phase equilibrium analysis, support the hypothesis that the interlayered dunite and harzburgite/lherzolite are straightforward consequences of boninite magma evolution in an open magma chamber system with periodic pulses of parental magma supply. The petrological significance is the new understanding on harzburgite petrogenesis. Our study complements previous studies and recognizes the interlayered ultramafic cumulates in the deep crustal section of the Troodos ophiolite complex as a consequence of boninite magma evolution. An important geodynamic implication is that care must be taken when interpreting seismic structure of the ocean crust in subduction settings, especially in rock sequences associated with subduction initiation where much of the boninite magmatism is thought to take place, which is of global significance.

In the following, we show our field and petrographic observations, discuss the data, and elaborate reasons that lead to our understanding and conclusions.

2. Geological setting

The Troodos ophiolite complex is one of the world’s best preserved and studied ophiolites, which exposes in the central part of the island of Cyprus in the eastern Mediterranean. A complete ophiolite sequence comprising mantle peridotite, dunite to felsic plutonic complex, sheeted dykes, pillow lavas and pelagic sediments has been documented (Greenbaum, 1972; Moores and Vine, 1971). The Troodos ophiolite can be divided into the northern massif and the southern massif bounded by the Arakapas transform fault zone (Fig. 1). The age of the ophiolite can be divided into the northern massif and the southern massif (Greenbaum, 1972; Moores and Vine, 1971). The Troodos ophiolite is 90–92 Ma based on U-Pb dating of zircons from the upper gabbros in the plutonic section (Konstantinou et al., 2007; Mukasa and Ludden, 1987), which has been confirmed recently using the advanced zircon U-Pb in situ dating method (Chen et al., 2020).

Although the Troodos ophiolite complex is well-studied, the tectonic setting in which it was formed remains in dispute. Previous studies suggest that the ophiolite could have formed in a juvenile arc, back-arc, fore-arc, slab-edge or ridge-trench-trench/transform triple junction setting (Osozawa et al., 2012; Pearce and Robinson, 2010; Regelous et al., 2014; Woelki et al., 2018). Fresh lavas have provided most useful information on the formation of the Troodos ophiolite. There have been varying divisions for the Troodos lavas based on their stratigraphy and geochemistry (e.g., Bednarz and Schmincke, 1994; Osozawa et al., 2012; Pearce and Robinson, 2010; Robinson et al., 1983; Smewing et al., 1975). The commonly accepted division includes three major suites: (1) a lower suite (lower pillow lava) of tholeiitic basalt, andesite, dacite to rhyolite, (2) a picritic, basaltic to andesitic upper pillow lava and (3) a boninitic suite cropping out mainly along the Arakapas Fault Zone (e.g., Flower and Levine, 1987; Thy and Xenophontos, 1991). We use this classification in our discussion for consistency. The boninite lava in Troodos is dated to be ~55 Ma based on the Ar-Ar age obtained by Osozawa et al. (2012), about 35 Myrs younger than the bulk Troodos ophiolite sequences of ~90 Ma (see above), indicating that they are unrelated.

The plutonic complex contains a series of ultramafic to gabbroic cumulate rocks overlying the mantle peridotite. The ultramafic cumulates exist in the lower levels of the plutonic complex, overlain by gabbros with or without cross-cutting basaltic dykes. Dunite, wehrlite, websterite and pyroxenite are most documented within the ultramafic cumulates (e.g., Batanova et al., 1996; Benn and Laurent, 1987; Greenbaum, 1972; Laurent, 1992; Thy, 1987a). The drill hole CY-4 (Fig. 1) sampled gabbros and ultramafic cumulates of coarse-grained websterites containing augite, enstatite, olivine and interstitial plagioclase (Thy, 1987a). Lowermost dunite and wehrlitic cumulates were not sampled by the CY-4 drilling. The CY-4 data show that the contact between the lower cumulate complex and the upper gabbros is a petrographic and chemical discontinuity (Thy, 1987a, 1987b), probably in fault contact. In this study, we do not discuss the above cumulate, but focus on the uniquely interlayered dunite-harzburgite/lherzolite cumulate (Fig. 2a–c).

3. Samples and petrography

3.1. Field observations and samples

The Troodos ophiolite has an inverted stratigraphic sequence with mantle harzburgite/lherzolite on the top of the mountain (Mount Olympus),...
whereas the lower ultramafic cumulate, gabbros, sheeted dykes and lavas occur downhill in this order (Fig. 1). Therefore, cumulates and lavas are well separated. To test the aforementioned hypothesis on the possible genetic relationship between the interlayered ultramafic cumulate (dunite + harzburgite/lherzolite) and boninite, and to understand the petrogenesis of the ultramafic cumulate, we collected representative samples of the cumulate and boninite for a detailed petrological and geochemical study.

Field observations were documented in both northern massif and southern massif of the Troodos ophiolite complex. Our interpreted (hypothesized) ultramafic cumulate comprises serpentinized harzburgite/lherzolite (brown) interlayered with serpentinized dunite (dark grey) (Fig. 2a–c) outcropped on a NW-SE trending ridge, ~1 km east of Pano Amiandos, occurring as blocks in fault contact in the vicinity of the “petrologic Moho” between the massive mantle harzburgite (~300 m east of mantle harzburgite) and plutonic rocks on the east flank of Mount Olympus (A in Fig. 1, Table 1). These blocks are several meters wide and several meters to tens of meters high. The lithological layers vary in thickness from decimeters (Fig. 2a) to millimeters (Fig. 2b) with sharp and parallel contacts. The distinctive cracks perpendicular to the layering are confined in the harzburgite/lherzolite layers (absent in the adjacent dunite layers) (Fig. 2a–c), which is best understood as greater volume expansion of dunite (Ol) than harzburgite/lherzolite (Ol + Opx ± Clinopyroxene) during serpentinization (see Niu et al., 1997). We sampled the brown and the dark-grey layers of varying thickness.

3.2. Petrography

Boninite samples near the Arakapas Fault Zone (AFZ) contain euhedral to subhedral phenocrysts of olivine, orthopyroxene and spinel (Fig. 3a). Olivine and pyroxene also occur as microlites in the glassy groundmass as the result of fast cooling and quench. The mineralogy and textures of these samples are very similar to the typical boninite from Hahajima Seamount, Bonin forearc (Li et al., 2013) and the modern boninite lava from the Lau Basin (Resing et al., 2011), and confirm the previous studies on the Troodos boninite (e.g., Cameron, 1985; Flower and Levine, 1987; Golowin et al., 2017; Robinson et al., 1983). The absence of plagioclase is a notable feature of typical boninite (e.g., Crawford et al., 1989; Resing et al., 2011; Robinson et al., 1983; Taylor et al., 1994).

Mineral modes of the ultramafic cumulate samples are done by point-counting (Table 1), indicating that the brown layers interlayered with dunite are dominated by harzburgite (locally lherzolite). The dunite layers are strongly serpentinized with only olivine cores left as relics. The dunite is characterized by typical mesh textures with olivine replaced by serpentine (Fig. 3b). In some dunite layers, the olivines are totally serpentinized (see the bottom two dunite layers in Fig. 4). The harzburgite layers are dominated by olivine and orthopyroxene without or with varying amount of clinopyroxene (Cpx), and have undergone varying degree of serpentinization. All the Ol, Opx and Cpx grains are cumulus phases. In most cases, Opx and Ol (~0.5–1 mm in size) are generally euhedral, showing texturally equilibrated mosaic of equigranular grains as adcumulate (Fig. 3c, d). Some olivine grains also exhibit subhedral to anhedral shapes with irregular boundaries (see Fig. 3e, f). The Cpx often occurs as anhedral

Table 1

<table>
<thead>
<tr>
<th>Sample</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Lithology</th>
<th>Mineral modes (vol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDS06-1</td>
<td>34°55′42″N</td>
<td>32°55′34″E</td>
<td>Dunite</td>
<td>Ol 97, Opx 3</td>
</tr>
<tr>
<td>TDS06-2</td>
<td>34°55′42″N</td>
<td>32°55′34″E</td>
<td>Lherzolite</td>
<td>Ol 51, Opx 32, Cpx 17</td>
</tr>
<tr>
<td>TDS45–4</td>
<td>34°55′42.61″N</td>
<td>32°55′35.16″E</td>
<td>Dunite</td>
<td>Ol 58, Opx 2</td>
</tr>
<tr>
<td>TDS45–5</td>
<td>34°55′42.61″N</td>
<td>32°55′35.16″E</td>
<td>Harzburgite</td>
<td>Ol 46, Opx 52, Cpx 2</td>
</tr>
<tr>
<td>TDS46</td>
<td>34°55′43.32″N</td>
<td>32°55′34.82″E</td>
<td>Dunite</td>
<td>Ol 49, Opx 46, Cpx 5</td>
</tr>
<tr>
<td>TDS47</td>
<td>34°55′44.53″N</td>
<td>32°55′34.07″E</td>
<td>Lherzolite</td>
<td>Ol 41, Opx 35, Cpx 24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dunite</td>
<td>Ol 100</td>
</tr>
</tbody>
</table>

The mineral modes are determined by point-counting on 200–600 points in each kind of layers.
isolated grains (Fig. 3e, f). Interstitial Cpx also occurs poikilitically enclosing Opx locally. Some orthopyroxene grains have exsolution textures with clinopyroxene lamellae along cleavages (Fig. 3d, f). It is possible that these minute clinopyroxene grains may have developed into the ‘granular exsolutions’ (see Niu, 2004), but most of the coarser-grained ones are clearly liquidus phase. Spinel is generally less than 0.2 mm in size and euhedral to anhedral in shape, often occurring along grain boundaries of Opx and Ol.

In order to show microscopic textures of the interlayered dunite and harzburgite/lherzolite cumulate as a whole, we piece together low magnification photomicrographs of a cumulate sample (TDS45–4) with relatively thin layers (2–15 mm) collected from the block shown in Fig. 2b (Fig. 4). The layers are well defined with clear contacts and transitions. The mineral modes given in Fig. 4 indicate that the harzburgite layers have varying Cpx and may be locally termed lherzolite if Cpx ≥ 10 vol% (not in this mosaic). The harzburgite shows typical cumulate texture though camouflaged by varying degrees of serpentinization with layer-perpendicular cracks filled with serpentines (see above and below). The dunite is strongly serpentinized, with few olivine relics in some of the layers. Spinel often appear as euhedral or subhedral crystals in the harzburgite layers, while fine-grained magnetite aggregates occur as bands in the interiors of the serpentine veins in dunite layers (Fig. 4 left). The layer-perpendicular cracks are filled with serpentines coming from the dunite layers. All the primary phases are subjected to serpentinization, but the rate and extent of serpentinization decrease in the order Ol, Opx and Cpx, with Ol-dominated dunite having volume expansion of up to ~30 wt%, significantly more than harzburgite (locally lherzolite) made up of Ol + Opx ± Cpx (Coleman and Keith, 1971; Niu et al., 1997; O’Hanley, 1992). As a result, the greater volume expansion of dunite layers causes layer-perpendicular cracks (filled with serpentines) in the adjacent harzburgite/lherzolite layers on both macroscopic (Fig. 2) and microscopic (Fig. 4) scales.
4. Methods

4.1. Sample preparation

To study the petrographic details of the interlayered cumulate of dunite and harzburgite/lherzolite, we sampled the cumulate on millimeter scales (see Fig. 2b) for texture characterization and mineral analysis (TDS06 and TDS45). Two samples with layers of 2–5 cm thick (see Fig. 2c) were also collected for “bulk-rock” analysis (TDS46 and TDS47). The harzburgite interlayered with dunite in TDS46 is locally of high Cpx (vs. seen in Fig. 4) and is best termed lherzolite on the petrographic scale (see Table 1). In order to show the different chemical compositions between the brown and dark-grey layers, the two cumulate samples were cut carefully into 5 pieces of “pure” dunite and 4 pieces of “pure” harzburgite/lherzolite with surface contaminants thoroughly removed. Although the “bulk-rock” samples are variably serpentinized, the compositions of the cumulate dunite and harzburgite/lherzolite can be compared on an anhydrous basis (see Niu, 2004) by normalizing major element compositions to 100%. These 9 sample fragments were then reduced to small (1–2 cm) chips and ultrasonically washed in Milli-Q water before dried and ground into powder using agate mill in a clean environment for “bulk-rock” analysis.

Boninite samples from pillow lavas and dykes near the AFZ have phenocrysts and quenched microlites. To obtain melt compositions, 9 boninite samples were crushed into chips of 1–2 mm size, and only groundmass fractions free of phenocrysts were hand-picked under a binocular before ultrasonically cleaned in Milli-Q water. These chips were then embedded in epoxy and polished for laser-ablation inductively coupled plasma-mass spectrometer (LA-ICP-MS) analysis.
4.2. Analytical methods

Bulk-rock major element analysis of the interlayered ultramafic cumulate was done in the Laboratory of Ocean Lithosphere and Mantle Dynamics, Institute of Oceanology, Chinese Academy of Sciences (LOLMD-IOCAS) by using Agilent 5100 inductively coupled plasma-optical emission spectrometer (ICP-OES) following the method of Kong et al. (2019). The analytical precision is better than 5% (RSD, relative standard deviation). The values of USGS reference materials BCR-2, BHVO-2 and AGV-2 analyzed together with the samples agree well with the reference values within error.

For trace element analysis, 50 mg powder of each cumulate sample was dissolved with acid mix (1: 2) of distilled HF and aqua regia (1 HNO3: 3 HCl) in a 15 mL Teflon beaker. The analysis was done using an Agilent 7900 inductively coupled plasma-mass spectrometer (ICP-MS) in the LOLMD-IOCAS following Chen et al. (2017). USGS Reference rocks (BCR-2, BHVO-2, AGV-2, GSP-2 and W-2) analyzed as unknowns along with the samples give compositions the same as recommended values within error.

The major and trace elements of boninite samples and minerals (olivine, orthopyroxene, clinopyroxene and spinel) in the interlayered ultramafic cumulate samples were analyzed using a Photon Machines Excite 193 nm excimer Ar-F laser system attached to an Agilent 7900 ICP-MS in the LOLMD-IOCAS. Spot size used for analyzing glasses and lavas was 110 μm. For minerals, spot sizes were 85 μm for olivine, orthopyroxene and clinopyroxene and 25 μm for spinel. An energy density of 3.94 J/cm2 at a repetition rate of 6 Hz were applied. Each analysis includes 25 s background acquisition.

Table 2

<table>
<thead>
<tr>
<th>Sample Location</th>
<th>Type</th>
<th>SiO2 (wt%)</th>
<th>TiO2 (wt%)</th>
<th>Al2O3 (wt%)</th>
<th>FeO (wt%)</th>
<th>MgO (wt%)</th>
<th>CaO (wt%)</th>
<th>Na2O (wt%)</th>
<th>K2O (wt%)</th>
<th>P2O5 (wt%)</th>
<th>Total (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFZ TDS19A</td>
<td>Pillow</td>
<td>55.45</td>
<td>0.246</td>
<td>16.66</td>
<td>8.45</td>
<td>3.23</td>
<td>8.06</td>
<td>0.849</td>
<td>0.426</td>
<td>0.018</td>
<td>99.56</td>
</tr>
<tr>
<td>AFZ TDS19C</td>
<td>Pillow</td>
<td>55.58</td>
<td>0.166</td>
<td>16.74</td>
<td>8.281</td>
<td>3.228</td>
<td>8.425</td>
<td>0.815</td>
<td>0.423</td>
<td>0.019</td>
<td>99.48</td>
</tr>
<tr>
<td>AFZ TDS19D</td>
<td>Pillow</td>
<td>53.25</td>
<td>0.125</td>
<td>15.51</td>
<td>9.89</td>
<td>2.966</td>
<td>9.138</td>
<td>1.805</td>
<td>0.31</td>
<td>0.011</td>
<td>99.54</td>
</tr>
<tr>
<td>AFZ TDS19E</td>
<td>Pillow</td>
<td>53.25</td>
<td>0.14</td>
<td>10.24</td>
<td>12.977</td>
<td>2.956</td>
<td>9.349</td>
<td>1.934</td>
<td>0.331</td>
<td>0.017</td>
<td>99.56</td>
</tr>
<tr>
<td>AFZ TDS19F</td>
<td>Pillow</td>
<td>52.57</td>
<td>0.265</td>
<td>16.66</td>
<td>7.989</td>
<td>2.958</td>
<td>9.349</td>
<td>1.934</td>
<td>0.331</td>
<td>0.017</td>
<td>99.56</td>
</tr>
<tr>
<td>AFZ TDS19G</td>
<td>Pillow</td>
<td>52.57</td>
<td>0.236</td>
<td>15.48</td>
<td>10.405</td>
<td>3.044</td>
<td>9.442</td>
<td>1.943</td>
<td>0.343</td>
<td>0.018</td>
<td>99.56</td>
</tr>
<tr>
<td>AFZ TDS19H</td>
<td>Pillow</td>
<td>53.59</td>
<td>0.27</td>
<td>14.92</td>
<td>7.843</td>
<td>3.042</td>
<td>9.442</td>
<td>2.013</td>
<td>0.355</td>
<td>0.018</td>
<td>99.56</td>
</tr>
</tbody>
</table>

AFZ, Arakapas Fault Zone; FeO, total Fe; Mg# = Mg/(Mg + Fe2+) (note: 10% total Fe is assumed to be Fe3+ in the calculation). Data of each sample have been averaged over 5 spots.
(gas blank) followed by 50 s data acquisition. USGS glasses (BCR-2G, BHVO-2G and BIR-1G) were used as multiple reference materials for external calibration following Liu et al. (2008). In combination with the summed metal oxide normalization method and time-drift correction according to the variations of NIST 610, the matrix effect and instrumental drift can be effectively corrected (Liu et al., 2008). The raw data were processed using ICPMSDataCal_ver11.0 (Liu et al., 2008). Data quality was assessed by the result of USGS reference materials and the repeated analyses of GSE-1G over the analytical session (Supplementary Table S1, S2). For major elements with concentrations >0.1 wt%, the accuracies (relative error between measured and recommended values) and precisions (RSD) for USGS glasses are generally better than 5%. The reproducibility of GSE-1G is better than 5% for most of the major element analyses of glass, olivine, pyroxene and spinel, except for TiO₂, Cr₂O₃, MnO, NiO, ZnO and V₂O₅ (RSD < 10%) in spinel analysis, which is due to the small ablation spot size (25 μm). For most trace elements, the accuracy and precision of USGS glasses and GSE-1G are better than 5% (Supplementary Table S3). The analytical details are given in Xiao et al. (2020).

5. Results

5.1. Major and trace element compositions of the boninite

There are recent analyses on fresh boninite glasses from the Troodos ophiolite available (Golowin et al., 2017; König et al., 2008; Woelki et al., 2018). Here we present some new data on major and trace elements of boninite pillow lavas and dykes from the AFZ (Table 2).

The major element compositions of the samples near the AFZ are consistent with typical boninite (MgO > 8 wt%, TiO₂ < 0.5 wt% and SiO₂ > 52 wt%; Le Bas, 2000). The slightly more evolved samples with lower MgO (7.0 – 7.3 wt%) are similar to the compositions of some boninite glass samples (Golowin et al., 2017; Woelki et al., 2018). The Troodos boninite is classed as high-Ca boninite because of the high CaO/Al₂O₃ value (always >0.75; Crawford et al., 1989), while boninite samples in this study have CaO/Al₂O₃ of 0.48 – 0.75. The trace element compositions of the boninite near the AFZ overlap well with the literature data on boninite glasses (Golowin et al., 2017; Woelki et al., 2018; Fig. 5). The REE patterns of the boninite samples show obvious “U shape” (Fig. 5a), and there is notable enrichment in fluid soluble elements (e.g., Ba, Rb, U, Sr and Pb) in both samples of boninite near the AFZ and the cumulate lherzolite relative to N-MORB. The boninite near the AFZ has a characteristic U-shape REE pattern, which can be distinguished from the tholeiite glass in Troodos.

Fig. 5. N-type MORB (Sun and McDonough, 1989) normalized REE (a) and multielement (b) patterns of the boninite from the Arakapas Fault Zone (AFZ) and the bulk-rock cumulate lherzolite (locally Cpx rich from the harzburgite layer). Fields of boninite glass (Golowin et al., 2017; Woelki et al., 2018) and tholeiite glass from the Akaki Canyon (Regelous et al., 2014) are shown for comparison. There is notable enrichment in fluid soluble elements (e.g., Ba, Rb, U, Sr and Pb) in both samples of boninite near the AFZ and the cumulate lherzolite relative to N-MORB. The boninite near the AFZ has a characteristic U-shape REE pattern, which can be distinguished from the tholeiite glass in Troodos.
elements (e.g., Ba, Rb, U, Sr and Pb) in boninite samples characteristic of subduction-related magmas (Fig. 5b). The U-shaped REE pattern is characteristic of boninite magmas as a result of addition of light rare earth element (LREE) enriched component to a refractory peridotite mantle source (Cameron et al., 1983; Crawford et al., 1989). All these observations confirm that the boninite samples near the AFZ are typical boninite.

5.2. Bulk-rock major and trace elements of the interlayered ultramafic cumulate

Bulk-rock major and trace element compositions of 5 dunite and 4 lherzolite (locally Cpx rich from the harzburgite layer; see above) cumulate samples are given in Table 3. The major element compositions are normalized to 100% on an anhydrous basis because of serpentinization related loss on ignition (LOI: 6.0–12.8 wt% for dunite and < 1.6 wt% for lherzolite from locally Cpx rich harzburgite layer). The data show obvious differences between the dark grey (dunite) and brown (harzburgite/lherzolite) layers as expected on the basis of field and petrographic observations. The dark grey layers have lower average SiO2 (44.42 wt%), Al2O3 (0.30 wt%), CaO (0.27 wt%), but higher FeOt (11.84 wt%) and MgO (44.61 wt%), whereas the brown layers have higher average SiO2 (52.52 wt%), Al2O3 (1.7 wt%), CaO (5.75 wt%), but lower FeOt (7.99 wt%) and MgO (31.76 wt%). In terms of bulk-rock incompatible trace element compositions, the lherzolite from locally Cpx rich harzburgite layer has similar characteristics (U-shaped REE pattern and enrichment in fluid soluble elements, see above) but lower concentration levels than the Troodos boninite (Fig. 5), which indicates a possible genetic link between the two.
5.3. Mineral chemistry

The average major element compositions of olivine, spinel, orthopyroxene and clinopyroxene and trace element compositions of orthopyroxene and clinopyroxene in different samples are given in Table 4 and Table 5 with individual analyses given in Supplementary Table S4 – S7.

The forsterite content for olivine (Fo) from the cumulate dunite varies from 87 to 89. The olivine phenocrysts in boninite glasses from the literature (Golowin et al., 2017) are more Mg-rich (the mean Fo is 89) with a larger Fo range (85–91) (Fig. 6). This indicates that the melt in equilibrium with olivine from the cumulate dunite is more evolved than the erupted boninite melt. This is expected in an evolving magma chamber with multiple pulses of melt injection (see below). We didn’t have the composition of olivine in the harzburgite/lherzolite layer because of pervasive of serpentinization with very rare relicts for analysis.

Orthopyroxene and clinopyroxene are both observed in the cumulate harzburgite/lherzolite. We analyzed 55 Opx grains and 33 Cpx grains from the harzburgite/lherzolite layers (Table 5). The Mg# varies from 0.88 to 0.89 and 0.89 to 0.91 in Opx and Cpx respectively. Orthopyroxene has lower CaO (0.97–3.99 wt%), TiO2 (0.02–0.03 wt%), Cr2O3 (0.42–0.63 wt%), slightly lower Al2O3 (1.25–1.64 wt%) and higher FeOt (31.73–33.52 wt%), FeOt (7.00–7.84 wt%), SiO2 (53.71–56.49 wt%) than clinopyroxene. The major element compositions of Cpx in the cumulate harzburgite/lherzolite differ greatly from those in mantle assumed to be Fe2+ in olivine).

The spinel analyses are recalculated on the basis of 32 oxygen atoms per formula unit. Mg# = Mg/(Mg + Fe2+) (total Fe is as-

Note that each sample contains several layers. Fo = Mg/(Mg + Fe2+) × 100% (total Fe is assumed to be Fe2+ in olivine).

Table 4 Major element compositions of olivine in the dunite and spinel in harzburgite/lherzolite and dunite.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Olivine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TDS061–2</td>
</tr>
<tr>
<td></td>
<td>801</td>
</tr>
<tr>
<td>N</td>
<td>22</td>
</tr>
<tr>
<td>SiO2</td>
<td>49.42</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.01</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.01</td>
</tr>
<tr>
<td>FeOt</td>
<td>11.67</td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
</tr>
<tr>
<td>MgO</td>
<td>11.67</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.01</td>
</tr>
<tr>
<td>CaO</td>
<td>0.01</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.006</td>
</tr>
<tr>
<td>K2O</td>
<td>0.006</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.006</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.006</td>
</tr>
<tr>
<td>MgOt</td>
<td>0.006</td>
</tr>
<tr>
<td>Al2O3</td>
<td>0.006</td>
</tr>
<tr>
<td>CaO</td>
<td>0.006</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.006</td>
</tr>
<tr>
<td>K2O</td>
<td>0.006</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>0.006</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Table 5 Major and trace element compositions of orthopyroxene and clinopyroxene in cumulate harzburgite/lherzolite.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Orthopyroxene</th>
<th>Clinopyroxene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TDS061–5</td>
<td>TDS062–5</td>
</tr>
<tr>
<td>N</td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>SiO2</td>
<td>55.68</td>
<td>55.26</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.027</td>
<td>0.026</td>
</tr>
<tr>
<td>Al2O3</td>
<td>1.445</td>
<td>1.380</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.557</td>
<td>0.539</td>
</tr>
<tr>
<td>FeOt</td>
<td>7.231</td>
<td>7.555</td>
</tr>
<tr>
<td>MnO</td>
<td>0.186</td>
<td>0.202</td>
</tr>
<tr>
<td>MgO</td>
<td>32.61</td>
<td>32.81</td>
</tr>
<tr>
<td>CaO</td>
<td>1.960</td>
<td>1.917</td>
</tr>
<tr>
<td>Na2O</td>
<td>0.007</td>
<td>0.012</td>
</tr>
<tr>
<td>K2O</td>
<td>0.0002</td>
<td>0.0005</td>
</tr>
<tr>
<td>Mg#</td>
<td>0.89</td>
<td>0.89</td>
</tr>
</tbody>
</table>

Note that each sample contains several layers. Mg# = Mg/(Mg + Fe2+) (total Fe is assumed to be Fe2+ in olivine).

Twenty spinel crystals from the cumulate harzburgite and dunite were analyzed with varying Cr2O3 (39.24–45.56 wt%), Al2O3 (15.56–21.01 wt%) and TiO2 (0.11–0.18 wt%). In the trivalent Cr-Al-Fc3 ternary cation diagram (Fig. 8a), the spinels in the ultramafic cumulate fall within the olivine chromatite compositional field between the fields of boninite and abyssal peridotite spinels, which can be classified as Al-chromite (Stevens, 1944). Compared with the compositions of spinel in boninite glass of the Troodos ophiolite (Golowin et al., 2017; Woelki et al., 2018), spinels in the ultramafic cumulate have lower Cr# (Cr# = Cr/(Cr + Al) = 0.56–0.64 with an average of 0.61) and slightly higher Mg# (Mg# = Mg/(Mg + Fe2+) = 0.39–0.57 with an average of 0.48), which is similar to forearc peridotite (Fig. 8b), suggesting a subducing-zone setting.
6. Discussion

6.1. Petrographic evidence for genetic link of boninite with the layered ultramafic cumulate

As shown above, boninite samples near the AFZ contain phenocrysts of olivine, orthopyroxene and spinel with olivine and pyroxene microlites without plagioclase (Fig. 3a), characteristic of typical boninite (e.g., Crawford et al., 1989; Li et al., 2013; Resing et al., 2011; Taylor et al., 1994). Experimental studies on the petrogenesis of boninite indeed indicate that olivine and orthopyroxene are primary liquidus phases followed by plagioclase (Plg) appearing very late on the liquidus (Duncan and Green, 1987; Falloon and Danyushevsky, 2000). Therefore, we can reason that the dunite (Ol) and harzburgite/lherzolite cumulate dunite (N=57, this study)

6.2. Discussion

6.2.1. Petrographic evidence for genetic link of boninite with the layered ultramafic cumulate

As shown above, boninite samples near the AFZ contain phenocrysts of olivine, orthopyroxene and spinel with olivine and pyroxene microlites without plagioclase (Fig. 3a), characteristic of typical boninite (e.g., Crawford et al., 1989; Li et al., 2013; Resing et al., 2011; Taylor et al., 1994). Experimental studies on the petrogenesis of boninite indeed indicate that olivine and orthopyroxene are primary liquidus phases followed by plagioclase (Plg) appearing very late on the liquidus (Duncan and Green, 1987; Falloon and Danyushevsky, 2000). Therefore, we can reason that the dunite (Ol) and harzburgite/lherzolite cumulate dunite (N=57, this study)
(Ol + Opx ± Cpx) cumulate must have formed as a straightforward consequence of boninite magma evolution. Indeed, the crystallization order of the ultramafic cumulate from the Pano Amiandois is reported as Ol → Opx → Cpx → Plg (Chum, 2014), which is different from that of the ultramafic cumulate commonly found in the Troodos ophiolite such as in the drill hole CY-4 (Ol → Opx → Cpx → Plg; George, 1978; Thy, 1987b; Browning et al., 1989). These observations and understanding thus point to the genetic link between the boninite (Fig. 2d–f) and the interlayered cumulate of dunite and harzburgite/lherzolite (Fig. 2a–c).

6.2. Major element compositional evidence for genetic link of boninite with the layered ultramafic cumulate

Spinels have been shown to be an effective tool to constrain parental melt compositions of cumulate rocks (e.g. Allahyari et al., 2014; Arai, 1994; Kamenetsky et al., 2001; Rollinson, 2008; Saccani and Tassinari, 2015). Experimental studies have shown direct relationship between compositions of melt and spinel in terms of Al2O3 and TiO2 (Kamenetsky et al., 2001; Wasylenki et al., 2003). Rollinson (2008) has derived expressions using spinel compositions to calculate Al2O3 and TiO2 contents in parental melts in arc-type settings:

\[\text{Al}_2\text{O}_3 \text{ (melt)} = 5.2181 \times \ln (\text{Al}_2\text{O}_3 \text{ in spinel}) - 1.0505 \]

\[\text{TiO}_2 \text{ (melt)} = 1.0963 \times \text{TiO}_2 \text{ (spinell)}^{0.7863} \]

Using this approach, we calculated Al2O3 and TiO2 contents of the parental melt in equilibrium with spinels in the cumulate dunite and harzburgite/lherzolite (Fig. 9). Contents of Al2O3 and TiO2 in boninite glasses from the literature (Woelki et al., 2018) and different tectonic settings are shown for comparison. The inferred melt has relatively lower Al2O3 (13.27–14.84 wt%) and TiO2 (0.19–0.28 wt%) than MORB and island arc tholeiite (IAT) and MORB are drawn for comparison (modified from Allahyari et al. (2014) and Saccani and Tassinari (2015)). The calculated melts are characteristic of boninite in this well-studied major element compositional space.

6.3. Trace element compositional evidence for genetic link of boninite with the layered ultramafic cumulate

If the cumulate harzburgite/lherzolite (and dunite) is indeed the crystallization product of the evolving boninite melt, the minerals in harzburgite/lherzolite should be in equilibrium with the melt represented by boninite lavas in the Troodos ophiolite. By using mineral-melt partition coefficients, we calculated the incompatible trace element compositions of melts in equilibrium with average compositions of clinopyroxene (Mg# = 0.90) and orthopyroxene (Mg# = 0.89) in the cumulate harzburgite/lherzolite.

Abundant pyroxene/melt partition coefficients (Kd’s) are available in the literature for anhydrous basaltic systems (see Bédard, 1999, 2001; Klemme et al., 2002; Niu et al., 1996), but rare for hydrous basalt and boninite melts. Because the relevant incompatible element Kd’s for wet hydrous systems are 2–3 times lower than in anhydrous melts (see McDade et al., 2003), we use the Kd data for dry basalts with half of the values in our calculation (Supplementary Table S8). Fig. 10 shows N-MORB normalized incompatible element patterns of such calculated melts in equilibrium with clinopyroxene and orthopyroxene in the cumulate harzburgite/lherzolite. The incompatible element patterns of calculated melts
in equilibrium with both Cpx and Opx show remarkable similarity to those of the Troodos boninite lavas (Fig. 10). There is also significant correlation for all the incompatible element abundances between the calculated melts in equilibrium with Cpx and Opx ($R_{\text{Cpx-melt}} = 0.95$ and $R_{\text{Opx-melt}} = 0.93$) and the average Troodos boninite glass composition. Most incompatible elements of the calculated melts overlap well with those of boninite samples (boninite glasses from the literature and boninite samples in this study) (Fig. 10).

The remarkable similarity in incompatible element abundances and systematics we present here offer evidence that the orthopyroxene and clinopyroxene in the cumulate harzburgite/lherzolite are in equilibrium with melts represented by the boninite in the Troodos ophiolite. Some of the mantle harzburgites/dunites in Troodos have been shown to be equilibrated with the migrating melts (boninites or some depleted un-melted harzburgite with irregular dunite dikes and veins, but have typical cumulate textures (Figs. 3 & 4) and harzburgite/lherzolite-dunite interlayering (Fig. 2a–c). Moreover, in terms of mineral chemistry, the interlayered harzburgite/lherzolite-dunite rocks have lower Fo of olivine (87–89), lower Mg# and higher FeOt of Cpx (see Fig. 8) than the mantle dunite and harzburgite that have undergone melt percolation (Batanova and Sobolev, 2000; Büchl et al., 2002). Hence, the data and understanding support our hypothesis that the interlayered harzburgite/lherzolite-dunite rocks in Troodos are of cumulate origin resulting from boninite magma evolution.

6.4. Liquid lines of descent evidence for genetic link of boninite with the layered ultramafic cumulate

We use Petrolog 3.1.1.3 software (Danyushevsky and Plechov, 2011) to simulate the liquid lines of descent (LLDs) of the Troodos boninite. The primary magma compositions for the Troodos boninite lavas can be inferred by calculation or using olivine melt inclusions (Duncan and Green, 1980; Falloon and Danyushevsky, 2000; Golowin et al., 2017; Portnyagin et al., 1997). We choose a primary Troodos boninite magma composition used by Golowin et al. (2017) because it was calculated from a boninite glass sample near the AFZ (TRV-353, Supplementary Table S9). High water content in the primary boninite magma is estimated in the literature (e.g. Dobson et al., 1995; Falloon and Danyushevsky, 2000; Sobolev and Chaussidon, 1996; Thy, 1987a). We use a water content of 4 wt% in the modeling. The initial oxidation state of magma is set to be QMF + 1 (Pearce and Robinson, 2010). Olivine, plagioclase, clinopyroxene and orthopyroxene are chosen as possible liquidus phases.

The modeled compositions of the residual melts (Fig. 11) and the crystallized cumulate (dunite, harzburgite and lherzolite, Supplementary Table S10) are most consistent with the compositions of boninite glasses and the interlayered ultramafic cumulate under 0.1 GPa. The liquidus minerals appear in the order of olivine (at Mg$_{\text{O}_{\text{melt}}} = 14.8$ wt%), orthopyroxene (at Mg$_{\text{O}_{\text{melt}}} = 10.9$ wt%), clinopyroxene (at Mg$_{\text{O}_{\text{melt}}} = 8.9$ wt%) and plagioclase (very late, at Mg$_{\text{O}_{\text{melt}}} = 3.3$ wt%) (Fig. 11). In the modeling, dunite, harzburgite and lherzolite can be produced after 1–14%, 15–24% and 25–29% crystallization respectively (see Supplementary Table S10). The LLD paths of major elements of the melt overlap well with the data from the boninite glasses (Fig. 11). Meanwhile, the Mg# of the modeled melt after 12–23% crystallization (Mg$_{\text{#}} = 0.66$–0.73) is very close to that of the boninite glass (Mg$_{\text{#}} = 0.65$–0.72; Woelki et al., 2018), which shows similar degree of magma evolution. The modeling also indicates that fractional crystallization of boninite may occur at a shallow depth (~3 km) in a magma chamber. In summary, the modeling results match well with the compositions of both the ultramafic cumulate (i.e., rocks with the assemblage of the liquidus minerals: OI → OI + Opx → OI + Opx + Cpx) and the boninite melt, which offer another line of evidence further in support of our hypothesis that the interlayered dunite (OI) and harzburgite/lherzolite (OI + Opx ± Cpx) cumulate in the Troodos ophiolite is the product of fractional crystallization of boninite magmas.
the Troodos ophiolite complex (Fig. 2a–c) are of cumulate origin.

hypothesis that the interlayered dunite-harzburgite/lherzolite rocks in

try, and melt modeling offer strong lines of evidence in support of our

during boninite magmatism

6.5. Development of the interlayered dunite and harzburgite/lherzolite

cumulate. Boninite melt

have developed in terms of understood phase equilibria during boninite

magma evolution.

As boninite has liquidus phases of Ol, Opx and minor Cpx, we can exa-

mine the phase relationships involving melt-Ol-Opx-Cpx to illustrate

the development of the interlayered dunite and harzburgite/lherzolite

cumulate. Experimental studies on multiple component natural sys-

tems are rare, but available experimental data on simple SiO₂-MgO-

CaO system with melt-Fo-En-Di endmember phase equilibria can be

used to approximate the natural melt-Ol-Opx-Cpx system to illustrate

the concept and development of the inter-layered dunite-harzburgite

cumulate. Because of the incongruent melting of enstatite at the pres-

sure < 2 GPa (Presnall et al., 1978), very few experimental studies fo-

cusing directly on the Fo-En-Di system. However, we can construct a

ternary Fo-En-Di phase diagram using existing experimental data

(Boyd et al., 1964; Davis and England, 1964; Inoue, 1994; Kushiro,

1969; Presnall et al., 1978; Williams and Kennedy, 1969) to illustrate

the concept as shown in Fig. 12. The temperature contours are for the

Fo-En-Di system at 2 GPa would be significantly lower for multi-

component natural systems especially for the hydrous boninitic sys-

tems, and the position of the eutectics may shift slightly under hydrous

condition and lower pressure (Kushiro, 1969; van der Laan, 1987), but

the concept we illustrate is valid and insightful as melt evolves and crys-

tallization takes place during cooling.

Assuming point A (Fig. 12) represents the composition of the pri-

mary boninite magma, it begins to crystallize forsterite with cooling,

leading to the melt move away from Fo towards the Fo-En cotectic

while precipitating dunite cumulate in a magma chamber (A → B in

Fig. 12). Continued cooling and crystallization of Fo with dunite cu-

mulate formation, the melt eventually reaches the Fo-En cotectic and

both Fo and En coprecipitate to form harzburgite cumulate over-

laying the earlier dunite layer (C → D in Fig. 12). Periodic primary

boninite melt replenishment into the magma chamber will result in

the above process to repeat, thus leading to the interlayered dunite-

harzburgite cumulate (Fig. 2a–c). The thickness of individual layers

depends on both the frequency of melt supply pulses and the volume

of each melt pulse. Importantly, delayed melt supply can lead to Fo-

En coprecipitation along the cotectic line to reach the Fo-En-Di eutec-

tic (E in Fig. 12), leading to the coprecipitation of clinopyroxene and

the formation of harzburgite with minor Cpx or localized lherzolite,

which is consistent with our observations (see above).

The formation of interlayered dunite-harzburgite/lherzolite cumu-

late in the Troodos ophiolite complex can be briefly summarized as

crystallization of boninite magma and periodic magma injections into

an open magma chamber as illustrated in Fig. 12, in cycles of

a → b → c → (d) → a → b → c → (d)...

Magmatic layering could be caused by several processes such as

convection-related processes (Naslund et al., 1991) and deformation

of crystal mush (Jousselin et al., 2012). These could be other processes

taking place in the magma chamber, but all these speculations are

hard to test. Besides, mechanical processes such as gravitational sorting

are unlikely because our observed layers are generally quite thin and as

thin as millimeters without grainsize grading. Our hypothesis is the sim-

plest and is physically most plausible process that agrees with the pet-

rologic and geochemical characteristics.

Corresponding to the phase equilibrium analysis (Fig. 12), Fig. 13 il-

lustrates the evolution of boninite magma and the petrogenesis of the

interlayered dunite-harzburgite/lherzolite cumulate. Boninite melt

originates from high degree partial melting of refractory harzburgitic

mantle sources as the result of water introduction at high temperatures

(Falloon and Danyushevsky, 2000; Kostopoulos and Murton, 1992; Li

et al., 2013). Crystallization of boninite melt in an open magma chamber

leads to the formation of the interlayered dunite-harzburgite/lherzolite

cumulate (Fig. 13a). The parental melt begins to crystallize olivine to

form a dunite layer (A → C in Fig. 12), and the continued crystallization

along the Fo-En cotectic and Fo-En-Di eutectic will produce harzburgite/

lherzolite layer (C → D → E in Fig. 12) (Fig. 13b). Primitive melt with
Fig. 12. Simplified Forsterite (Fo)-Enstatite (En)-Diopside (Di) ternary phase diagrams to approximate the natural Ol-Opx-Cpx phase relationships to illustrate the petrogenesis of the interlayered dunite and harzburgite/lherzolite cumulate in the Troodos ophiolite. The dashed lines are isotherms at intervals of 100 °C and the solid lines are cotectic lines. The melting temperatures for Fo, En, Di are from Davis and England (1964), Boyd et al. (1964), Williams and Kennedy (1969). The eutectic temperatures of Di-En, Fo-Di and Fo-En joins at 2 GPa are from Kushiro (1969), Presnall et al. (1978) and Inoue (1994) respectively. Note that the natural water saturated Ol-Opx-Cpx systems appropriate for boninite magmatism necessarily have lower temperatures than these dry Fo-En-Di systems, but the concept and process we show are valid demonstrations. The parental melt begins to crystallize olivine to form a dunite layer before reaching the Ol-Opx cotectic (A → B), along which Ol and Opx coprecipitate to form a harzburgite layer (C → D). The melt will evolve to the Ol-Opx-Cpx eutectic (E) to form harzburgite with some Cpx or lherzolite if the replenishment is delayed. Periodical melt injection into the magma chamber results in dunite-harzburgite interlayered cumulate, in cycles of a → b → c → d → a → b → c → d..., L, liquid; DUN, dunite; HZ, harzburgite; LZ, lherzolite.

Fig. 13. Schematic illustration showing the formation of the interlayered dunite (DUN) and harzburgite (HZ)/lherzolite (LZ) cumulate. The cumulate sequence is best understood as the result of fractional crystallization of periodically replenished mantle-derived boninite melts as illustrated in terms of phase equilibria (Fig. 12) and schematically in (a), (b-f) illustrate the development of the cumulate. After the formation of a dunite-harzburgite/lherzolite sequence in a magma chamber (b, Fig. 11), primitive melt (Mg#1) with high temperature injects into the magma chamber (c). The erupted melt (Mg#2) consists of much of the newly replenished primitive melt having Mg#1 mixed with the existing prior evolved melt. The unerupted melt mixing with the evolved melt in the magma chamber (Mg#1) continues the crystallization to form next cumulate layers (c–e, f). That is, the interlayered cumulate forms as resulting from periodically replenished (injected) and periodically erupted steady-state open magma chamber system. The varying thickness of the layers (see Fig. 2a–c) reflects varying frequency and varying volume of melt supply pulses.
high temperature and high Mg# (Mg#1) injects into the magma chamber, which, mixed with some existing melt, will soon erupt under increased pressure (Mg#2). The unerupted melt can mix more thoroughly with the evolved melts in the magma chamber to continue the crystallization as above (Mg#3), forming layered dunite-harzburgite/lerzolite cumulate (Fig. 13c–e, f). It is important to note that this repeated cycling process will lead to melt compositional changes with Mg#1 > Mg#2 > Mg#3 (Fig. 13c). Hence, olivine phenocrysts from boninite glasses have higher Fo than olivine in the cumulate (Fig. 6).

7. Conclusions

In this paper, we report the interlayered dunite-harzburgite/lerzolite rock association in the Troodos ophiolite complex. We hypothesize that this rock association is of magmatic cumulate origin as the result of boninite magma evolution. We have successfully tested and proved this hypothesis by using field and petrographic observations, mineral chemistry, major and trace element compositions, petrological modeling, and phase equilibrium analysis.

(1) This understanding represents an important novel petrological contribution.

(2) With Ol and Opx being the liquidus phases and with the interlayered dunite (Ol)-harzburgite/lerzolite (Ol + Opx ± Cpx) rock association, we hypothesize that the latter is of cumulate origin as a result of straightforward consequence of boninite magma evolution.

(3) The melts in equilibrium with spinels in the cumulate harzburgite/lerzolite and dunite are characteristically boninitic in terms of major element compositions (e.g., TiO2 and A12O3).

(4) The calculated melts in equilibrium with Cpx and Opx in the cumulate harzburgite/lerzolite share the same trace element patterns as the Troodos boninite (both glasses and bulk-rock compositions).

(5) Petrological modeling of the boninite melt evolution shows a crystallization order of Ol → Opx → Cpx → Plg, indicating that the cumulate dunite and harzburgite (locally lherzolite) in the Troodos ophiolite can be produced by fractional crystallization of the primary boninite melt at 0.1 GPa.

(6) The petrogenesis of the interlayered dunite-harzburgite/lerzolite cumulate is best understood as the result of fractional crystallization of periodically replenished and periodically erupted open magma chamber with the primitive boninite melt derived from depleted mantle sources.

(7) We emphasize it important to consider dunite-harzburgite/lerzolite cumulate when interpreting seismic structure of the crust in subduction settings, especially in rock sequences associated with subduction initiation thought to be indicated by boninite magmatism.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank the company of Iain Neill, Peter Tollan and Durham 3rd year students during our annual Troodos field trips. We thank Akihiro Tamura and anonymous reviewers for constructive reviews, and Michael Roden for editorial handling. This study is supported by the National Natural Science Foundation of China (41630968), the NSFC-Shandong Joint Fund for Marine Science Research Centers (U1606401), the National Natural Science Foundation of China (91958215), Qingdao National Laboratory for Marine Science and Technology (2015ASK03), and the 111 Project (B18048).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.lithos.2020.105764.

References

