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Out/In-Trees and Out/In-Branchings

A subgraph T+ (T−) of a digraph D is an out-tree (in-tree) if
T is an oriented tree with only one vertex s of in-degree
(out-degree) 0 (root).

Vertices of T+ (T−) of out-degree (in-degree) 0 are leaves;
non-leaves = internal vertices.

out-branching = spanning out-tree; in-branching = spanning
in-tree

A digraph D has an out-branching (in-branching) iff D has
only one initial (terminal) strongly connected component.
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Example

(c) R(a) D (b) Q

Figure 1: A digraph D and its out-branchings with minimum and maximum
number of leaves (Q and R, respectively).
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Some Well-Known Results

A digraph D has an out-branching iff D has only one initial
strongly-connected component. (folklore)

Matrix Tree Theorem. For a digraph D = ([n],A), Kirchoff
matrix K = [Kij ]: Kij := −xij if i 6= j and ij ∈ A, and∑

`i∈A x`i if i = j . Kr̄ is Kirchoff matrix minus r ’th row and
column. Br is the set of out-branchings rooted at r . Then
det(Kr̄ ) =

∑
B∈Br

∏
ij∈A(B) xij .

A min weight out-branching in polynomial time: intersection
of two matroids, an O(n(n + m))-time algorithm (Edmonds,
1967).
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Problems with Extremal Number of Leaves

Find an out-branching with min number of leaves, `min(D), or
find an out-branching with max number of internal vertices,
ivmax(D).

If `min(D) = 1, D has a Hamilton dipath.

Find an out-branching with max number of leaves, `max(D).
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k-Leaf-Out-Branching problem

Finding a max leaf out-branching is NP-hard even for acyclic
digraphs. [Alon, Fomin, Gutin, Krivelevich, Saurabh, 2007]

k-Leaf-Out-Branching: given D check whether `max(D) ≥ k.
Is k-Leaf-Out-Branching FPT? [M. Fellows, 2005]

Alon et al. (2007): an O∗(2O(k log2 k))-time algorithm for
strong digraphs and a O∗(2O(k log k))-time algorithm for
acyclic digraphs.

Bonsma and Dorn (2008): an O∗(2O(k log k))-time algorithm.
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Faster Algorithms

Kneis, Langer and Rossmanith (2011): an O∗(4k)-time
algorithm.

Simple: at each iteration the algorithm either declares a leaf v
of the current out-tree T leaf of the out-branching or adds all
children of v to T .

Daligault, Gutin, Kim and Yeo (2010): an O∗(3.72k)-time
algorithm (currently fastest).
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Kernels

Binkele-Raible, Fernau, Fomin, Lokshtanov, Saurabh and
Villanger (2012): no polynomial kernel for
k-Leaf-Out-Branching (for arbitrary digraphs) unless
coNP ⊆ NP/poly , which is highly unlikely.

Daligault, Gutin, Kim and Yeo (2010): an O(k)-vertex kernel
for acyclic digraphs.

Binkele-Raible et al. (2012): an O(k3)-vertex kernel for
Rooted k-Leaf-Out-Branching. Thus, a Turing polynomial
kernel exists.

Still open: Is there an O(k)-vertex kernel for Rooted
k-Leaf-Out-Branching?
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MinLeaf for DAGs

Definition

MinLeaf: For a digraph D find an out-branching with `min(D)
leaves.

US patent of Demers and Downing, 2000, for database search.
Reduced to MinLeaf in directed acyclic graphs (DAGs). A
heuristic suggested.

Gutin, Razgon and Kim, 2009: a polytime algorithm for
MinLeaf on DAGs.
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Fixed-Parameter Tractability: a Generalization of P

Definition

A parameterized problem Π can be considered as a set of pairs
(I , k) where I is the problem instance and k is the parameter.

Definition

Π is fixed-parameter tractable (FPT) if membership of (I , k) in Π
can be decided in time O(f (k)|I |O(1)) = O∗(f (k)), where f (k) is a
computable function.

Definition

A kernelization is a polytime reduction (I , k) 7→ (I ′, k ′) from a
parameterized problem Π to itself such that (I , k) ∈ Π iff
(I ′, k ′) ∈ Π with k ′ + |I ′| ≤ h(k) for a fixed function h; h(k) is the
size of the kernel. A kernel is polynomial if h(k) is a polynomial.
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FPT Result and Kernel

For any fixed k , deciding if `min(D) ≤ k is NP-hard.

Let k be a parameter and iv(D) = |V (D)| − `(D). Deciding if
ivmax(D) ≥ k is FPT: there is an O(k2)-vertex kernel and an
O∗(2O(k log k))-algorithm for deciding if ivmax(D) ≥ k. [Gutin,
Razgon and Kim, 2009]

Still open: Is there an O(k)-vertex kernel? There is a
O(k)-vertex kernel for acyclic [Gutin, Razgon and Kim, 2009]
and symmetric [Fomin et al., 2013] digraphs.
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Faster Deterministic and Randomized Algorithms

O∗(55.8k) [det, Cohen et al. 2010], O∗(4k) [random,
Daligault, 2011],

O∗(16k(1+o(1))) [det, Fomin et al., 2012], O∗(6.855k) [det,
Shachnai and Zehavi, 2015],

O∗(5.139k) [det, Zehavi, 2016], O∗(3.617k) [random, Zehavi,
2015],

O∗(2k) [random, Björklund, Kaski and Koutis, 2017],
O∗(3.41k) [det, Gutin, Reidl, Wahlström and Zehavi, 2018].
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Algorithm 1

O∗(3.86k)-time and O∗(1)-space deterministic algorithm for
deciding an out-branching with at least k internal vertices
[Gutin, Reidl, Wahlström and Zehavi, JCSS 95(1), 2018].

Matrix Tree Theorem: det(Kr̄ ) =
∑

B∈Br
∏

ij∈A(B) xij .

Fix r . Set xij = xi . Let Br ,k = {B ∈ Br : iv(B) ≥ k}.
∃B ∈ Br ,k iff det(Kr̄ ) has a monomial with at least k distinct
xi ’s.

To check it efficiently, we use efficient color coding and
monomial sieving. k-coloring: {x1, . . . , xn} → {y1, . . . , yk}.
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Algorithm 1

O∗(3.86k)-time and O∗(1)-space deterministic algorithm for
deciding an out-branching with at least k internal vertices
[Gutin, Reidl, Wahlström and Zehavi, JCSS 95(1), 2018].
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Algorithm 2

M-Lemma: (i) Let T be an out-tree s.t. iv(T ) ≥ k. Then T
has a matching of size ≥ k/2; (ii) Let M be a matching in D.
In O∗(1) time, we can find an out-branching B of D s.t. every
arc of M has at least one vertex as an internal vertex in B.

Let M be a maximum matching in D of size t. By M-Lemma,
k/2 ≤ t ≤ k.

For every c ∈ {0, 1, . . . , k} consider all sets M ′ of c arcs in M
in which both vertices are leaves in some B ∈ Br ,k . For every
such vertex i , xi gets its own yj .

For ip ∈ M \M ′, xi , xp get one yj .
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Algorithm 3

Every other xi gets a random yj out of the remaining
k − t − c ones. Derandomization via a perfect hash family.

Sieving Lemma allows to decide if det(Kr̄ (y1, . . . yk)) has a
monomial with all y1, . . . , yk in time O∗(2k).

Exp. part of runtime f (k) =
∑k−t

c=0

(t
c

)
e(k−t−c)(1+o(1))2k .

f (k) = O∗(3.857k).
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Questions

Questions?

Comments?
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