Algorithms for Out-Branchings in Digraphs

Gregory Gutin

School of Computer Science and Mathematics Royal Holloway, University of London

Liverpool, 20th Sep 2018

Outline

- 2 Maximum Leaf Out-branchings
- **3** Minimum Leaf Out-branchings
- Fast P-Space Algorithm for Out-Branchings with at Least k Internal Vertices

Outline

- 2 Maximum Leaf Out-branchings
- **3** Minimum Leaf Out-branchings
- Fast P-Space Algorithm for Out-Branchings with at Least k Internal Vertices

Very Recent Book on Digraphs

Gregory Gutin

Branchings in Digraphs

- < ∃ →

Out/In-Trees and Out/In-Branchings

A subgraph T⁺ (T⁻) of a digraph D is an out-tree (in-tree) if T is an oriented tree with only one vertex s of in-degree (out-degree) 0 (root).

Out/In-Trees and Out/In-Branchings

- A subgraph T⁺ (T⁻) of a digraph D is an out-tree (in-tree) if T is an oriented tree with only one vertex s of in-degree (out-degree) 0 (root).
- Vertices of T⁺ (T⁻) of out-degree (in-degree) 0 are leaves; non-leaves = internal vertices.

・ロット (日) ・ (日) ・ (日)

Out/In-Trees and Out/In-Branchings

- A subgraph T⁺ (T⁻) of a digraph D is an out-tree (in-tree) if T is an oriented tree with only one vertex s of in-degree (out-degree) 0 (root).
- Vertices of T⁺ (T⁻) of out-degree (in-degree) 0 are leaves; non-leaves = internal vertices.
- out-branching = spanning out-tree; in-branching = spanning in-tree

Out/In-Trees and Out/In-Branchings

- A subgraph T⁺ (T⁻) of a digraph D is an out-tree (in-tree) if T is an oriented tree with only one vertex s of in-degree (out-degree) 0 (root).
- Vertices of T⁺ (T⁻) of out-degree (in-degree) 0 are leaves; non-leaves = internal vertices.
- out-branching = spanning out-tree; in-branching = spanning in-tree
- A digraph *D* has an out-branching (in-branching) iff *D* has only one initial (terminal) strongly connected component.

Example

Figure 1: A digraph D and its out-branchings with minimum and maximum number of leaves (Q and R, respectively).

< □ > < □ > < □ > < □ > < □ > .

Э

Some Well-Known Results

• A digraph *D* has an out-branching iff *D* has only one initial strongly-connected component. (folklore)

Some Well-Known Results

- A digraph *D* has an out-branching iff *D* has only one initial strongly-connected component. (folklore)
- Matrix Tree Theorem. For a digraph D = ([n], A), Kirchoff matrix $K = [K_{ij}]$: $K_{ij} := -x_{ij}$ if $i \neq j$ and $ij \in A$, and $\sum_{\ell i \in A} x_{\ell i}$ if i = j. $K_{\overline{r}}$ is Kirchoff matrix minus r'th row and column. \mathcal{B}_r is the set of out-branchings rooted at r. Then $\det(K_{\overline{r}}) = \sum_{B \in \mathcal{B}_r} \prod_{ij \in A(B)} x_{ij}$.

Some Well-Known Results

- A digraph *D* has an out-branching iff *D* has only one initial strongly-connected component. (folklore)
- Matrix Tree Theorem. For a digraph D = ([n], A), Kirchoff matrix $K = [K_{ij}]$: $K_{ij} := -x_{ij}$ if $i \neq j$ and $ij \in A$, and $\sum_{\ell i \in A} x_{\ell i}$ if i = j. $K_{\overline{r}}$ is Kirchoff matrix minus r'th row and column. \mathcal{B}_r is the set of out-branchings rooted at r. Then $\det(K_{\overline{r}}) = \sum_{B \in \mathcal{B}_r} \prod_{ij \in A(B)} x_{ij}$.
- A min weight out-branching in polynomial time: intersection of two matroids, an O(n(n + m))-time algorithm (Edmonds, 1967).

Problems with Extremal Number of Leaves

• Find an out-branching with min number of leaves, $\ell_{\min}(D)$, or find an out-branching with max number of internal vertices, $iv_{\max}(D)$.

Problems with Extremal Number of Leaves

- Find an out-branching with min number of leaves, $\ell_{\min}(D)$, or find an out-branching with max number of internal vertices, $iv_{\max}(D)$.
- If $\ell_{\min}(D) = 1$, D has a Hamilton dipath.

イロン イヨン イヨン

Problems with Extremal Number of Leaves

- Find an out-branching with min number of leaves, $\ell_{\min}(D)$, or find an out-branching with max number of internal vertices, $iv_{\max}(D)$.
- If $\ell_{\min}(D) = 1$, D has a Hamilton dipath.
- Find an out-branching with max number of leaves, $\ell_{max}(D)$.

Outline

2 Maximum Leaf Out-branchings

- **3** Minimum Leaf Out-branchings
- Fast P-Space Algorithm for Out-Branchings with at Least k Internal Vertices

k-Leaf-Out-Branching problem

• Finding a max leaf out-branching is NP-hard even for acyclic digraphs. [Alon, Fomin, Gutin, Krivelevich, Saurabh, 2007]

・ロット 御 とう ほどう きょう

k-Leaf-Out-Branching problem

- Finding a max leaf out-branching is NP-hard even for acyclic digraphs. [Alon, Fomin, Gutin, Krivelevich, Saurabh, 2007]
- k-Leaf-Out-Branching: given D check whether ℓ_{max}(D) ≥ k. Is k-Leaf-Out-Branching FPT? [M. Fellows, 2005]

k-Leaf-Out-Branching problem

- Finding a max leaf out-branching is NP-hard even for acyclic digraphs. [Alon, Fomin, Gutin, Krivelevich, Saurabh, 2007]
- k-Leaf-Out-Branching: given D check whether ℓ_{max}(D) ≥ k. Is k-Leaf-Out-Branching FPT? [M. Fellows, 2005]
- Alon et al. (2007): an O*(2^{O(k log² k)})-time algorithm for strong digraphs and a O*(2^{O(k log k)})-time algorithm for acyclic digraphs.

k-Leaf-Out-Branching problem

- Finding a max leaf out-branching is NP-hard even for acyclic digraphs. [Alon, Fomin, Gutin, Krivelevich, Saurabh, 2007]
- k-Leaf-Out-Branching: given D check whether ℓ_{max}(D) ≥ k. Is k-Leaf-Out-Branching FPT? [M. Fellows, 2005]
- Alon et al. (2007): an O*(2^{O(k log² k)})-time algorithm for strong digraphs and a O*(2^{O(k log k)})-time algorithm for acyclic digraphs.
- Bonsma and Dorn (2008): an $O^*(2^{O(k \log k)})$ -time algorithm.

Faster Algorithms

• Kneis, Langer and Rossmanith (2011): an $O^*(4^k)$ -time algorithm.

イロト イヨト イヨト イヨト

3

Faster Algorithms

- Kneis, Langer and Rossmanith (2011): an $O^*(4^k)$ -time algorithm.
- Simple: at each iteration the algorithm either declares a leaf v of the current out-tree T leaf of the out-branching or adds all children of v to T.

Faster Algorithms

- Kneis, Langer and Rossmanith (2011): an $O^*(4^k)$ -time algorithm.
- Simple: at each iteration the algorithm either declares a leaf v of the current out-tree T leaf of the out-branching or adds all children of v to T.
- Daligault, Gutin, Kim and Yeo (2010): an $O^*(3.72^k)$ -time algorithm (currently fastest).

 Binkele-Raible, Fernau, Fomin, Lokshtanov, Saurabh and Villanger (2012): no polynomial kernel for *k*-Leaf-Out-Branching (for arbitrary digraphs) unless *coNP* ⊆ *NP*/*poly*, which is highly unlikely.

- Binkele-Raible, Fernau, Fomin, Lokshtanov, Saurabh and Villanger (2012): no polynomial kernel for *k*-Leaf-Out-Branching (for arbitrary digraphs) unless *coNP* ⊆ *NP*/*poly*, which is highly unlikely.
- Daligault, Gutin, Kim and Yeo (2010): an O(k)-vertex kernel for acyclic digraphs.

- Binkele-Raible, Fernau, Fomin, Lokshtanov, Saurabh and Villanger (2012): no polynomial kernel for *k*-Leaf-Out-Branching (for arbitrary digraphs) unless *coNP* ⊆ *NP*/*poly*, which is highly unlikely.
- Daligault, Gutin, Kim and Yeo (2010): an O(k)-vertex kernel for acyclic digraphs.
- Binkele-Raible et al. (2012): an $O(k^3)$ -vertex kernel for Rooted k-Leaf-Out-Branching. Thus, a *Turing* polynomial kernel exists.

- Binkele-Raible, Fernau, Fomin, Lokshtanov, Saurabh and Villanger (2012): no polynomial kernel for *k*-Leaf-Out-Branching (for arbitrary digraphs) unless *coNP* ⊆ *NP*/*poly*, which is highly unlikely.
- Daligault, Gutin, Kim and Yeo (2010): an O(k)-vertex kernel for acyclic digraphs.
- Binkele-Raible et al. (2012): an $O(k^3)$ -vertex kernel for Rooted k-Leaf-Out-Branching. Thus, a *Turing* polynomial kernel exists.
- Still open: Is there an O(k)-vertex kernel for Rooted k-Leaf-Out-Branching?

Outline

2 Maximum Leaf Out-branchings

3 Minimum Leaf Out-branchings

Fast P-Space Algorithm for Out-Branchings with at Least k Internal Vertices

MinLeaf for DAGs

Definition

MinLeaf: For a digraph D find an out-branching with $\ell_{\min}(D)$ leaves.

イロト イヨト イヨト イヨト

E

Sar

MinLeaf for DAGs

Definition

MinLeaf: For a digraph D find an out-branching with $\ell_{\min}(D)$ leaves.

• US patent of Demers and Downing, 2000, for database search. Reduced to MinLeaf in directed acyclic graphs (DAGs). A heuristic suggested.

MinLeaf for DAGs

Definition

MinLeaf: For a digraph D find an out-branching with $\ell_{\min}(D)$ leaves.

- US patent of Demers and Downing, 2000, for database search. Reduced to MinLeaf in directed acyclic graphs (DAGs). A heuristic suggested.
- Gutin, Razgon and Kim, 2009: a polytime algorithm for MinLeaf on DAGs.

Fixed-Parameter Tractability: a Generalization of P

Definition

A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem instance and k is the parameter.

Fixed-Parameter Tractability: a Generalization of P

Definition

A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem instance and k is the parameter.

Definition

 Π is fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time $O(f(k)|I|^{O(1)}) = O^*(f(k))$, where f(k) is a computable function.

Fixed-Parameter Tractability: a Generalization of P

Definition

A parameterized problem Π can be considered as a set of pairs (I, k) where I is the problem instance and k is the parameter.

Definition

 Π is fixed-parameter tractable (FPT) if membership of (I, k) in Π can be decided in time $O(f(k)|I|^{O(1)}) = O^*(f(k))$, where f(k) is a computable function.

Definition

A kernelization is a polytime reduction $(I, k) \mapsto (I', k')$ from a parameterized problem Π to itself such that $(I, k) \in \Pi$ iff $(I', k') \in \Pi$ with $k' + |I'| \le h(k)$ for a fixed function h; h(k) is the size of the kernel. A kernel is polynomial if h(k) is a polynomial.

FPT Result and Kernel

• For any fixed k, deciding if $\ell_{\min}(D) \leq k$ is NP-hard.

イロト イヨト イヨト イヨト

E

FPT Result and Kernel

- For any fixed k, deciding if $\ell_{\min}(D) \leq k$ is NP-hard.
- Let k be a parameter and $iv(D) = |V(D)| \ell(D)$. Deciding if $iv_{\max}(D) \ge k$ is FPT: there is an $O(k^2)$ -vertex kernel and an $O^*(2^{O(k \log k)})$ -algorithm for deciding if $iv_{\max}(D) \ge k$. [Gutin, Razgon and Kim, 2009]

FPT Result and Kernel

- For any fixed k, deciding if $\ell_{\min}(D) \leq k$ is NP-hard.
- Let k be a parameter and $iv(D) = |V(D)| \ell(D)$. Deciding if $iv_{\max}(D) \ge k$ is FPT: there is an $O(k^2)$ -vertex kernel and an $O^*(2^{O(k \log k)})$ -algorithm for deciding if $iv_{\max}(D) \ge k$. [Gutin, Razgon and Kim, 2009]
- Still open: Is there an O(k)-vertex kernel? There is a O(k)-vertex kernel for acyclic [Gutin, Razgon and Kim, 2009] and symmetric [Fomin et al., 2013] digraphs.

Faster Deterministic and Randomized Algorithms

- O^{*}(55.8^k) [det, Cohen et al. 2010], O^{*}(4^k) [random, Daligault, 2011],
- O*(16^{k(1+o(1))}) [det, Fomin et al., 2012], O*(6.855^k) [det, Shachnai and Zehavi, 2015],
- *O**(5.139^{*k*}) [det, Zehavi, 2016], *O**(3.617^{*k*}) [random, Zehavi, 2015],
- O^{*}(2^k) [random, Björklund, Kaski and Koutis, 2017], O^{*}(3.41^k) [det, Gutin, Reidl, Wahlström and Zehavi, 2018].

A B > A B > A B >

Outline

- 2 Maximum Leaf Out-branchings
- **3** Minimum Leaf Out-branchings
- Fast P-Space Algorithm for Out-Branchings with at Least k Internal Vertices

Algorithm 1

O*(3.86^k)-time and O*(1)-space deterministic algorithm for deciding an out-branching with at least k internal vertices [Gutin, Reidl, Wahlström and Zehavi, JCSS 95(1), 2018].

Algorithm 1

- O*(3.86^k)-time and O*(1)-space deterministic algorithm for deciding an out-branching with at least k internal vertices [Gutin, Reidl, Wahlström and Zehavi, JCSS 95(1), 2018].
- Matrix Tree Theorem: $det(K_{\bar{r}}) = \sum_{B \in \mathcal{B}_r} \prod_{ij \in A(B)} x_{ij}$.

Algorithm 1

- O*(3.86^k)-time and O*(1)-space deterministic algorithm for deciding an out-branching with at least k internal vertices [Gutin, Reidl, Wahlström and Zehavi, JCSS 95(1), 2018].
- Matrix Tree Theorem: $det(K_{\bar{r}}) = \sum_{B \in \mathcal{B}_r} \prod_{ij \in A(B)} x_{ij}$.
- Fix r. Set $x_{ij} = x_i$. Let $\mathcal{B}_{r,k} = \{B \in \mathcal{B}_r : iv(B) \ge k\}$. $\exists B \in \mathcal{B}_{r,k} \text{ iff } \det(\mathcal{K}_{\overline{r}}) \text{ has a monomial with at least } k \text{ distinct } x_i \text{ 's.}$

・ロット (日) ・ (日) ・ (日)

Algorithm 1

- O*(3.86^k)-time and O*(1)-space deterministic algorithm for deciding an out-branching with at least k internal vertices [Gutin, Reidl, Wahlström and Zehavi, JCSS 95(1), 2018].
- Matrix Tree Theorem: $det(K_{\bar{r}}) = \sum_{B \in \mathcal{B}_r} \prod_{ij \in A(B)} x_{ij}$.
- Fix r. Set $x_{ij} = x_i$. Let $\mathcal{B}_{r,k} = \{B \in \mathcal{B}_r : iv(B) \ge k\}$. $\exists B \in \mathcal{B}_{r,k} \text{ iff } \det(K_{\overline{r}}) \text{ has a monomial with at least } k \text{ distinct } x_i \text{ 's.}$
- To check it efficiently, we use efficient color coding and monomial sieving. k-coloring: {x₁,...,x_n} → {y₁,...,y_k}.

Algorithm 2

M-Lemma: (i) Let T be an out-tree s.t. iv(T) ≥ k. Then T has a matching of size ≥ k/2; (ii) Let M be a matching in D. In O*(1) time, we can find an out-branching B of D s.t. every arc of M has at least one vertex as an internal vertex in B.

・ロット (雪) (モン・(田))

Algorithm 2

- M-Lemma: (i) Let T be an out-tree s.t. iv(T) ≥ k. Then T has a matching of size ≥ k/2; (ii) Let M be a matching in D. In O*(1) time, we can find an out-branching B of D s.t. every arc of M has at least one vertex as an internal vertex in B.
- Let *M* be a maximum matching in *D* of size *t*. By *M*-Lemma, $k/2 \le t \le k$.

Algorithm 2

- M-Lemma: (i) Let T be an out-tree s.t. iv(T) ≥ k. Then T has a matching of size ≥ k/2; (ii) Let M be a matching in D. In O*(1) time, we can find an out-branching B of D s.t. every arc of M has at least one vertex as an internal vertex in B.
- Let *M* be a maximum matching in *D* of size *t*. By *M*-Lemma, $k/2 \le t \le k$.
- For every c ∈ {0,1,...,k} consider all sets M' of c arcs in M in which both vertices are leaves in some B ∈ B_{r,k}. For every such vertex i, x_i gets its own y_j.

Algorithm 2

- M-Lemma: (i) Let T be an out-tree s.t. iv(T) ≥ k. Then T has a matching of size ≥ k/2; (ii) Let M be a matching in D. In O*(1) time, we can find an out-branching B of D s.t. every arc of M has at least one vertex as an internal vertex in B.
- Let M be a maximum matching in D of size t. By M-Lemma, $k/2 \le t \le k$.
- For every c ∈ {0,1,...,k} consider all sets M' of c arcs in M in which both vertices are leaves in some B ∈ B_{r,k}. For every such vertex i, x_i gets its own y_j.
- For $ip \in M \setminus M'$, x_i, x_p get one y_j .

Algorithm 3

 Every other x_i gets a random y_j out of the remaining k - t - c ones. Derandomization via a perfect hash family.

・ロト ・回 ト ・ヨト ・ヨト

3

Algorithm 3

- Every other x_i gets a random y_j out of the remaining k - t - c ones. Derandomization via a perfect hash family.
- Sieving Lemma allows to decide if det(K_r(y₁,...y_k)) has a monomial with all y₁,..., y_k in time O^{*}(2^k).

Algorithm 3

- Every other x_i gets a random y_j out of the remaining k - t - c ones. Derandomization via a perfect hash family.
- Sieving Lemma allows to decide if det(K_r(y₁,...y_k)) has a monomial with all y₁,..., y_k in time O^{*}(2^k).
- Exp. part of runtime $f(k) = \sum_{c=0}^{k-t} {t \choose c} e^{(k-t-c)(1+o(1))} 2^k$.

・ロット (日) ・ (日) ・ (日)

Algorithm 3

- Every other x_i gets a random y_j out of the remaining k - t - c ones. Derandomization via a perfect hash family.
- Sieving Lemma allows to decide if det(K_r(y₁,...y_k)) has a monomial with all y₁,..., y_k in time O^{*}(2^k).
- Exp. part of runtime $f(k) = \sum_{c=0}^{k-t} {t \choose c} e^{(k-t-c)(1+o(1))} 2^k$.

•
$$f(k) = O^*(3.857^k)$$
.

・ロット (日) ・ (日) ・ (日)

Questions

- Questions?
- Comments?

▲ロト ▲圖ト ▲屋ト ▲屋ト

Э

DQC