Systematic Literature Review Protocol:
Teaching Novices Programming Using Robotics

Louis Major
School of Computing and Mathematics, Keele University,
Keele, Staffordshire, ST5 5BG.
l.major@epsam.keele.ac.uk
June 2010

1 Change Record

<table>
<thead>
<tr>
<th>Version</th>
<th>Document History</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>First draft of Protocol</td>
</tr>
<tr>
<td>1.1</td>
<td>Correction of spelling mistakes</td>
</tr>
<tr>
<td>1.2</td>
<td>Minor revisions made after expert review of Version 1.1 Protocol</td>
</tr>
<tr>
<td>1.3</td>
<td>Revisions made to Quality Assessment Forms</td>
</tr>
</tbody>
</table>

2 Background

Learning to program a computer is a difficult task [1] and it is one factor that contributes to introductory programming courses traditionally suffering high drop-out rates [2]. As if overcoming such a barrier was not challenge enough, the subject is also associated with several negative stereotypes. Indeed, programming is often viewed as being overly complex [3] and as a topic that is reserved for males alone [4]. Moreover, those who routinely practice programming may be considered ‘geeky’ [5] and likely to be lonesome [6]. At present the general public are unable to relate to the significance of programming or to what it actually entails. This is due to programming rarely being contextualised in a manner that is familiar to them [7]. Subsequently, few people (including potential programming students) realise that the subject is an integral element of many different technologies that they use daily. The continued rise in the use of programmed goods has led to an increase in the demand for talented workers capable of coding them [8]. At present, however, the supply of skilled programmers lags behind this as fewer students are deciding to study the subject. Such an occurrence is worrying given that programminngs influence on daily life continues to become more apparent. After all, the effect of programmed technology can now be said to impact upon almost all areas of our everyday routines. This has led to the suggestion that the applications of programming will continue to grow, before the subjects influence on society is comparable to past creations such as the cinema and novel [9].

Results of past research that has been undertaken by the author (when completing an MSc Dissertation and whilst performing a systematic mapping study at the start of a PhD course) highlighted how ‘interventions’ (i.e. specific techniques, approaches or technologies) have previously been adopted to overcome some of the issues that restrict the successful teaching of programming to novices. These studies, however, were broad in their nature and it is planned that this previous work is built upon by honing in on a more specific research topic. The conclusions of this previous research suggested how this may be done by examining the teaching of introductory programming and a specific intervention. As such, research into the teaching of introductory programming using Robotics has been selected as a suitable platform upon which this previous work can be expanded. Such a decision has been arrived at due to there being Robotics expertise available within the Department
of Computer Science and Mathematics at Keele University, and as previous personal experience has
highlighted that there is the potential for further research to investigate use of Robotics in an intro-
ductive programming context. The fact that the mapping study identified the use of Robotics as
an intervention that had been examined during past research, but one where there is still significant
scope for additional exploration, also explains why a study of Robotics (in the context of teaching
introductory programming) has been selected.

The Systematic Literature Review (SLR) method has been chosen to investigate such a topic.
By doing so a trustworthy, repeatable and thorough methodology has been adopted. During the
course of the mapping study that was performed no SLR (or ‘traditional’ Literature Review) was
found to have investigated the use of Robotics in an introductory programming context. As a result,
the SLR that will follow this Protocol will be the first of its kind to examine the study area. The
Protocol that is presented will specify the plan that is to be followed in order to ensure successful
implementation of the SLR.

3 Research Questions

The objectives of the SLR are to:

- Undertake a systematic review of the literature related to the teaching of introductory pro-
 gramming using Robotics.
- Select a sub-set of studies to review in greater detail.
- Collect and analyse the evidence from these studies in order to assess the benefits and limita-
 tions of using Robotics to teach introductory programming concepts.
- Offer a clear picture of the current state of research in the field.
- To provide an appropriate framework/background in order that future research activities can
 be appropriately positioned.

In order to fulfil these objectives a research question has been devised:

“How effective has the use of Robotics been in the teaching of introductory pro-
gramming?”

Such a research question has been developed after discussing the objectives of the research project
with two PhD supervisors and as the results of the mapping study only provided a broad overview
of how Robotics have been used to teach introductory programming. To support this research ques-
tion, and to ensure the collection of all relevant data, several secondary research questions have also
been created. These questions will help to ensure that the study will be comprehensive in its nature,
whilst providing an in-depth analysis into the past use of Robots to teach novices programming.
These sub-questions are:

[SLRRQ1] What computer languages are being taught, in introductory programming courses, with
the assistance of Robotics?

[SLRRQ2] Are the Robots that are being used simulated or physical (real-life)?

[SLRRQ3] What are the characteristics of the novices being taught (i.e. what is their age, level of
education etc.)?

[SLRRQ4] What types of studies are being performed by researchers that investigate the teaching
of introductory programming concepts using Robots?

[SLRRQ5] What is the scale of studies that are being performed by researchers (e.g. number
of participants)?

[SLRRQ6] Do collected studies suggest that using Robotics, to teach introductory programming,
4 Search Strategy

This section outlines the strategy that will be used to search for primary studies. The search strategy is intended to identify and collect all of the literature that complies with the inclusion and exclusion criteria that is detailed in Section 5. A mixed search strategy will be adopted and includes both automatic searches of electronic databases and manual searches of conference proceedings. Past experience in performing a systematic mapping study was used to develop the search strategy that will be implemented. Note, year of publication will not be restricted as trial searches (Section 4.4) suggest that the devised search strategy will return a manageable number of results that will not need to be further reduced.

4.1 Resources To Be Searched

The following resources will be searched in order to identify and collect relevant material:

Electronic Databases
ACM Digital Library, CiteSeerX, EBSCOhost, IEEEExplore, ISI Web of Science and Keele Universities Digital Library. The Australian Education Index, British Education Index and ERIC (Education Resources Information Centre) will also be searched to ensure that an adequate search of education based articles and journals has taken place.

Conference Proceedings
ECSS (European Computer Science Summit), ESOP (European Symposium on Programming), ICSE (International Conference on Software Engineering), ITICSE (Conference on Innovation and Technology in Computer Science Education), SIGCSE (Technical Symposium on Computer Science Education) and SIGITE (Conference on Information Technology Education).

Journals

Other
Other sources of evidence will also be searched to ensure thoroughness. As the study progresses it is intended that reference lists from included studies will be manually examined to identify literature of interest that was not discovered during the initial search. Whilst a general search of the internet will not take place, due to returned results likely being un-citable, the internet will be used to find copies of specific papers.

4.2 Search Strategy

Full text searches will be run on each of the resources outlined. The following search strings have been devised and will be run on all the electronic resources discussed:

1. (robots OR robotics) AND (“amateur programming” OR “amateur programmer”)
2. (robots OR robotics) AND (“beginner programming” OR “beginner programmer”)
3. (robots OR robotics) AND (“first time programming” OR “first time programmer”)
4. (robots OR robotics) AND (“introductory programming” OR “introductory programmer”)
5. (robots OR robotics) AND (“novice programming” OR “novice programmer”)
6. (robots OR robotics) AND “teaching programming”

7. (robots OR robotics) AND “learning programming”

A single Boolean search string can be devised by combining all of these search terms together:

(robots OR robotics) AND (“amateur programming” OR “amateur programmer” OR “beginner programming” OR “beginner programmer” OR “first time programming” OR “first time programmer” OR “introductory programming” OR “introductory programmer” OR “novice programming” OR “novice programmer” OR “teaching programming” OR “learning programming”)

After these searches have been run the following search string will then be used to search on the title and abstracts of papers alone:

(robots OR robotics) AND programming AND (novice OR beginner OR introductory OR teaching OR learning OR CS1 or “first time”)

4.3 Search Results and Documentation

As it is expected that a large number of references will be collected during the course of the SLR, the JabRef bibliographic package has been selected for the management of these. The reference of each paper that is deemed suitable for inclusion in the SLR will be entered into the reference manager along with the DOI (Digital Object Identifier), a copy of the abstract and a short note detailing why the paper has been accepted. Each reference will also be given a unique ID key.

In order for the review to be transparent and repeatable, the conduct of the search will be documented. Any amendments to the search strategy will be detailed and justified. Search results that are returned will also be saved for later re-analysis (if required). If a publication is found on more than one resource only the most recent will be accepted into the SLR. The full texts of accepted publications will be stored on two separate drives (with the file-name being changed so that it corresponds with the unique ID key that is stored by the reference manager).

4.4 Validation of the Search Strategy

During the systematic mapping study that was previously performed, several papers were identified as being relevant to the study that is presented here:

Trial searches were run on the ACM Digital Library, IEEEExplore and EBSCOhost electronic resources. As these papers were found during the testing process the inclusiveness of the search terms selected have been validated. Moreover, the quantity of results returned during the trial searches also provides an indicator as to how much effort will have to be exerted during the search for publications. This has been used to create a schedule that predicts how long the entire SLR process should take (See Section 9).

5 Selection Criteria

This section describes the inclusion and exclusion criteria that will be used to ensure that only relevant literature is accepted into the SLR.
5.1 **Inclusion Criteria**

- Publications will only be included that report on the use of Robotics in teaching introductory programming to students who are studying either a specific Computing or IT-related course.
- Papers that involve an empirical study or have a ‘lessons learned’ (experience report) element will be included.
- Where several papers have reported the same study only the most recent paper will be included.
- Date of publication will not act as a barrier for inclusion.
- Grey literature, such as technical papers or government reports, will be accepted if relevant.

5.2 **Exclusion Criteria**

- Publications will be excluded if their main focus is not on the use of Robotics in teaching Computing or IT students introductory programming, but on the use of Robotics in general education courses, as part of a non-IT or Computing related course syllabus, or to teach rudimentary programming concepts to very young children.
- Papers that just propose an approach or describe the use of Robots to teach introductory programming (with no ‘lessons learnt’ component) shall be excluded.
- Papers and reports will be excluded where only the abstract, but not the full text, is available.
- Publications will be excluded if they are not written in English.
- Letters, editorials and position papers will all be excluded.

5.3 **Selection Process**

The selection process will be performed by one researcher (the author) with a test/re-test approach being applied after an interval (of one month) to verify the selection process. In addition to this, two second researchers (PhD supervisors) will also independently select a random sample of the archived search results and compare these with the results of searches that they have undertaken. By adopting these techniques the consistency of the inclusion and exclusion criteria can be tested and verified.

The selection process is effectively divided into two phases:

1. Publications found during the initial search are assessed for their suitability based upon analysis of their title and abstract. Clearly irrelevant literature is excluded.
2. Publications selected during Phase 1 are then subject to a more thorough analysis (i.e. reading of the full text). This is done to ensure that the publication in question definitely contains information that is relevant to the study being performed, as well as data that can be extracted for later analysis.

5.4 **Study Quality Assessment**

Each publication in the final set will be assessed for its quality. The quality assessment procedure will occur at the same time as the extraction of relevant data and has the aim of ensuring that a particular studies findings will make a valuable contribution to the SLR. 11 criteria for quality assessment are discussed by Dyba and Dingsøyr in [10]. These criteria were used by Dyba and Dingsøyr in an SLR when there were a number of different study types. Adoption of the same criteria has been deemed appropriate for use during this SLR as it is envisaged that it will include examples of several different study types also. The 11 criteria that will be used to assess the quality of each publication are detailed below:

1. Is the paper based on research or is it a “lessons learned” report based on expert opinion?
2. Is there a clear statement of the aims of the research?
3. Is there an adequate description of the context in which the research was carried out?

4. Was the research design appropriate to address the aims of the research?

5. Was the recruitment strategy appropriate to the aims of the research?

6. Was there a control group with which to compare treatments?

7. Was the data collected in a way that addressed the research issue?

8. Was the data analysis sufficiently rigorous?

9. Has the relationship between researcher and participants been considered to an adequate degree?

10. Is there a clear statement of findings?

11. Is the study of value for research or practice?

The first two of these criteria will be used to exclude non-research papers and those that do not clearly state the aims of their research. Literature that does not satisfy these two criteria will be excluded from the SLR. As such, these first two criteria represent the minimum quality threshold that will be observed during the review. The remaining 9 criteria aim to determine the rigour and credibility of the research methods employed in a particular study as well as the relevance of each paper to the SLR that is being undertaken. The answers to each question, in regard to each item of literature included in the SLR, will be inserted into a spreadsheet and assigned a value from 1 (‘Yes’), 0 (‘No’) or 0.5 (‘Maybe’). Judgement will then be passed in relation to what papers report the most valuable findings and are most important to the study. In order to test the validity of the study quality assessment a PhD supervisor will given a random set of 8 papers and then be asked to assess these based on the criteria outlined. Any disagreements in the classification of quality will then be discussed and resolved by consulting a second PhD supervisor. See Appendix 1 for the complete study quality assessment form.

6 Data Extraction

This section describes how the information that is required from each publication will be obtained.

6.1 Data To Be Collected

All data will be extracted by a sole reviewer (the author). A second assessor (a PhD supervisor) will independently extract information from a random sample of publications. The results will then be compared and contrasted with one another. If significant anomalies are evident in the testing of this random sample, discussions will then take place amongst the assessors, in conjunction with a second PhD supervisor, to resolve the issue.

The following information will be extracted from accepted studies:

- Abstract and bibliographic reference along with the date of data extraction
- Why the study was accepted into the SLR
- Study type (e.g. journal paper, conference paper, technical report etc.)
- Study aims and objectives
- Setting of the study
- Methodology of study (e.g. observational, experience reports, comparative etc.)
- Information about baseline where appropriate (i.e. method against which Robotics is being compared)
- Number of participants in a study (e.g. number of students in an experiment)
• How data was collected and analysed during the study (e.g. Questionnaires and method of data analysis)
• Characteristics of novices being taught (e.g. age, level of education)
• Type of computer language being taught using Robotics (e.g. Java, C++, Other)
• Nature of the Robot being used to teach a programming language (e.g. simulated or physical)
• Findings and conclusions
• Scale of the study (e.g. number of participants involved in a primary study)
• Relevance of the study (e.g. in relation to the topic under consideration)
• Effectiveness of Robotics as an intervention to teach introductory programming

To extract the relevant information publications will be read in full. All extracted data will stored within a spreadsheet. This will allow for easy reference when writing the report and will also ensure that all information pertinent to the study is stored in one location.

6.2 Data Synthesis

Until the results of the SLR have been aggregated the data synthesis strategy will not be finalised. It is envisaged, however, that the data will be tabulated in a number of research question related tables. Following this, a narrative summary of the findings across the studies will be written. Data has already been extracted from the three papers identified in Section 4.4, during a trial run, in order to test the data synthesis process.

7 Study Limitations

An aspect of the study over which the author has little control is in relation to the electronic databases that will be utilised in order to collect a large proportion of the data to be used during the SLR. As the results are returned automatically by these electronic resources, little influence can be exerted over what is returned by them. This may result in no two searches being truly identical and have a detrimental impact upon the possibility of future studies being able to exactly replicate the research performed.

Several decisions that have been taken, during the creation of the Protocol that is presented, may also have an effect upon the results produced during the SLR. To elaborate, the inclusion, exclusion and study selection criteria, as well as the data extraction strategy, may all be influenced by different individuals interpretations (i.e. what one researcher included, another may have excluded). The risk of such an event occurring, however, will be minimised by ensuring that relevant sampling of results is undertaken by individuals (two PhD supervisors) other that the main researcher (the author). A test/re-test method will also be implemented in order to supplement this sampling process.

8 Validation of the Protocol

Validation of the Protocol presented has been performed after an earlier version (1.1) was given to two expert reviewers (Professor Barbara Kitchenham and Professor Pearl Brereton both of Keele University). The changes that were suggested by these reviewers have been incorporated into the Protocol that is presented.
Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
<th>Deliverables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1</td>
<td>Develop SLR Protocol, Give to Experts</td>
<td>n/a</td>
</tr>
<tr>
<td>Week 2</td>
<td>Revise SLR Protocol</td>
<td>Finish Protocol</td>
</tr>
<tr>
<td>Weeks 3-6</td>
<td>Search for Publications</td>
<td>List of Publications</td>
</tr>
<tr>
<td>Week 7</td>
<td>Test/Re-test Process</td>
<td>n/a</td>
</tr>
<tr>
<td>Week 8</td>
<td>Publication Selection</td>
<td>List of Selected Publications</td>
</tr>
<tr>
<td>Weeks 9-10</td>
<td>Data Extraction</td>
<td>Tables of Data</td>
</tr>
<tr>
<td>Week 11</td>
<td>Data Analysis</td>
<td>n/a</td>
</tr>
<tr>
<td>Weeks 12-14</td>
<td>Report Write-up</td>
<td>Finish Report</td>
</tr>
</tbody>
</table>
Appendix 1: Study Quality Assessment Form

Question & Considerations

Is this a research paper?
- does the paper involve an empirical study or is it a “lessons learned”/experience report based on expert opinion?

YES NO

Is there a clear statement of the aims of the research?
- is there a rationale for why the study was undertaken?
- is there a clear statement of the studies primary outcome?
- is the main focus on the use of Robotics in teaching introductory programming concepts to Computing or IT students (e.g. those who are studying a specific Computing or IT course and are not being taught programming as part of another subject or the general curriculum?)

YES NO

If the response to either of the above questions is NO the Quality Assessment procedure is not to be continued for that paper.

Is there an adequate description of the context in which the research was carried out?
- is the context in which the study was performed clear?

YES NO

Was the research design appropriate to address the aims of the research?
- has the researcher justified the research design (e.g. have they discussed how they decided which methods to use)?

YES NO
Was the recruitment strategy appropriate to the aims of the research?
- has the researcher explained how participants and cases were identified and selected?
- are these representative of an entire population?
- was the sample size sufficiently large?
- how might the recruitment strategy impact upon the results?

YES NO

Was there a control group with which to compare treatments?
- how were the controls selected?
- were they representative of an entire population?
- was there something special about the controls?
- was the non-response high?
- could respondents be different in any way?

YES NO

Was the data collected in a way that addressed the research issue?
- were all measures clearly defined?
- is it clear how data was collected?
- has the researcher justified the methods that were chosen?
- if the methods were modified during the study has a justification been given as to why?

YES NO

Was the data analysis sufficiently rigorous?
- was there an in-depth description of the analysis process?
- has sufficient data been presented to support the findings?
- to what extent has contradictory data been taken into account?

YES NO

Has the relationship between the researcher and participants been considered to an adequate degree?
- has the researcher examined their own role, potential bias and influence during formulation of research questions, sample recruitment, data collection and analysis?

YES NO
Is there a clear statement of findings?
- are the findings explicit?
- has an adequate discussion of the evidence, both for and against the researchers arguments, taken place?
- are the limitations of the study discussed?
- are the conclusions justified from the results?

YES NO

Is the study of value for research or practice?
- does the researcher discuss the contribution the study makes to existing knowledge or understanding?
- does the research identify new areas where research is necessary?
- does the researcher discuss whether or how the findings can be transferred to other populations?

YES NO

Total Score

Note to the Reviewer:
If the response to a question is n/a (Not Applicable) please answer ‘NO’.
A score of 0.5, in response to a question, can be awarded if necessary.
A ‘YES’ constitutes a 1 and a ‘NO’ equates to a 0. Please consider this when calculating the overall quality score for a publication.
References

