Mantle plumes were originally proposed in 1971 by W. Jason Morgan, who defined precisely their characteristics and consequences. However, subsequent research was variable in its success in confirming the predictions. Despite this, instead of the theory being abandoned as would have occurred, for example, in medical research if a drug were found to not produce the predicted results, the plume model was progressively adapted to encompass unpredicted observations. Plumes have been proposed to come from almost any depth, to rise vertically or tilt, and to flow for thousands of kilometres laterally. They have been proposed to have narrow or broad conduits, no plume head, one head, or multiple heads. They may produce steady or variable flow, be long- or short-lived, speed up or slow down, have a source that is either depleted, enriched, or both, and have either high or low $^3$He/$^4$He. Often, several mutually inconsistent plume models have been proposed for a single “hot spot”, to account for data from different sub-disciplines within Earth Science. In short, the theory of mantle plumes as it is applied today is so flexible it amounts to an unfalsifiable, data-independent, a priori assumption. Much applied research comprises reporting observations and explaining how the plume model must be adapted to fit them, often with little heed paid to adaptions already proposed by other authors. Such an approach is unscientific, and cannot increase our fundamental understanding of how the Earth works.

In a quest to find models that fit the observations without ad hoc assumptions or appeals to coincidence, there has recently been a resurgence of interest in alternative models for regions of anomalous volcanism. The most promising of these, the “Plate” model, attributes anomalous volcanism to permissive magmatism in areas of extension. The volumes of melt produced, which may vary from being large to little, are attributed primarily to variations in source fertility. Source volatile content (CO$_2$ and H$_2$O) and temperature will also affect melt volumes. Extension occurs at spreading plate boundaries, close to which a third of all melting anomalies lie, and intraplate regions such as the East African Rift, the Basin & Range Province, W USA, and back-arc basins. Fertility may be imparted to the mantle by subducted slabs of oceanic lithosphere, the crustal portion of which transforms to eclogite at depth, and recycling of delaminated continental lithosphere into the asthenosphere when continents break up. Mantle fertilised by eclogite or recycled continental lithosphere has a solidus as much as 200°C lower than that of standard depleted mantle peridotite, and where such material is tapped at a ridge or intraplate extensional area, large volumes of magma will be produced at relatively normal temperatures.

The Plate model for the genesis of melting anomalies raises many new questions and challenges. Can the melt volumes observed be quantitatively modeled? How should seismic tomography images be interpreted? Are “hot spots” hot? Are deep mantle plumes physically possible? What is the relationship between large igneous provinces and volcanic chains? Can geochemical observations be reconciled with a fertile source at relatively normal temperatures? What is the
origin of high $^3$He/$^4$He? What are the most promising models for the ~ 20 melting anomalies that Morgan (1971) originally suggested were underlain by plumes? The challenge to the deeply entrenched plume hypothesis and the new thinking it requires, offers a whole new world of different research ideas, but is not for the faint-hearted.

References


visit: [http://www.mantleplumes.org/](http://www.mantleplumes.org/)

Figure: Schematic representation of the Plate model for the origin of melting anomalies