
Accelerating Ant Colony Optimization-based Edge Detection
on the GPU using CUDA

Laurence Dawson and Iain A. Stewart

Abstract— Ant Colony Optimization (ACO) is a nature-
inspired metaheuristic that can be applied to a wide range
of optimization problems. In this paper we present the first
parallel implementation of an ACO-based (image processing)
edge detection algorithm on the Graphics Processing Unit
(GPU) using NVIDIA CUDA. We extend recent work so that
we are able to implement a novel data-parallel approach
that maps individual ants to thread warps. By exploiting the
massively parallel nature of the GPU, we are able to execute
significantly more ants per ACO-iteration allowing us to reduce
the total number of iterations required to create an edge map.
We hope that reducing the execution time of an ACO-based
implementation of edge detection will increase its viability in
image processing and computer vision.

I. INTRODUCTION

Ant Colony Optimization (ACO) is a nature-inspired
population-based metaheuristic that models the behaviour
of a colony of ants to solve a variety of optimization
problems [1]. Ant system (AS) is the simplest ACO algorithm
and consists of two stages: construction of solutions; and
pheromone update. In the first stage, individual ants itera-
tively build up solutions to a given problem using heuristic
information and via indirect communication with other ants
using pheromone trails (also known as stigmergy). In the
second stage, after solutions are constructed each ant deposits
an amount of pheromone proportional to the quality of
the solution constructed. The pheromone trails are built up
gradually and shape the solutions constructed by ants in
future iterations of the algorithm. Dorigo and Stützle note [1]
that good solutions are an emergent property of this feedback
mechanism and cooperation between ants. There have also
been many other alternative ACO algorithms proposed in-
cluding elitist AS,MAX −MIN AS (MMAS), ant colony
system and the hyper-cube framework for ACO [1].

ACO has been successfully applied to many different prob-
lems including; the Travelling Salesman Problem (TSP) [1],
the Quadratic Assignment Problem [2] and, in recent years,
to a range of image processing problems including edge
detection [3]. Dorigo and Stützle remark [1] that for many
applications ACO solutions often rival the best in class.

Edge detection is the process of producing a map of edges
from a given input image. The resulting edge maps are an
essential component of many computer vision algorithms as
they drastically reduce the input data size whilst preserving
vital information concerning the edge boundaries [4]. Bate-
rina and Oppus [5] note that traditional approaches to edge
detection can be computationally expensive as an exhaustive
search is performed via per-pixel convolution to determine
the position of edge boundaries from neighbouring pixels.

Nezamabadi-pour et al. [3] moved away from per-pixel
convolution and proposed the first mapping of ACO for
edge detection by implementing the AS algorithm. In their
approach, ants are placed randomly on a given image and
move around the image following variations in intensity.
The ants then deposit pheromone so as to communicate
which edges to follow. This process gradually results in ants
grouping around the edges of the image which, in turn, is
used to produce an edge map (to which a morphological
thinning algorithm may be applied). The process produces
high quality edge maps but, as Lu and Chen [6] note, overall
it can be slow due to redundancy in the search.

NVIDIA CUDA is a parallel programming architecture for
developing general purpose applications for direct execution
on the GPU [7]. CUDA exposes the GPU’s massively parallel
architecture so that parallel code can be written to execute
much faster than its optimized sequential counterpart. CUDA
compatible GPUs can now be found in a wide range of
devices from desktop computers to laptops and more recently
mobile devices such as tablet computers and phones [8].
CUDA applications will automatically scale to utilize the
number of available CUDA cores. Although CUDA abstracts
the underlying architecture of the GPU, utilising and schedul-
ing the GPU for maximum potential speedups is non-trivial.
Due to the intrinsically parallel nature of ACO, there has
been substantial research efforts ([9], [10], [11], [12], [13])
to develop parallel ACO implementations for execution on
the GPU so as to exploit the architecture for significant
performance gains.

In this paper we present the first parallel ACO edge
detection implementation for execution on the GPU using
NVIDIA CUDA. Our aim is to improve the runtime, and thus
viability of the algorithm, rather than introduce fundamental
changes to the design of the algorithm (however, the nuances
of CUDA usually mean that algorithm amendments occur so
as to secure an efficient implementation). Our implementa-
tion is able to match the quality of the edge maps produced
by the implementation by Nezamabadi-pour et al [3]. By
extending previous research [9], [10], we utilise a data-
parallel approach: we are able to show that a previously
proposed data-parallel ant mapping is still applicable for im-
age processing despite conventional GPU image processing
algorithms using the pixel-to-thread mapping. The primary
contribution of this paper is the novel mapping of individual
ants to CUDA thread warps so as to pack multiple ants
into a single thread block whilst maintaining a data-parallel
approach. This approach yields the best results and speedups
of around 150x against an optimized sequential counterpart.

II. BACKGROUND

In this section we define ACO, AS and how AS can be
applied to edge detection. For additional details regarding
ACO we direct the reader to the extensive original works of
Dorigo and Stützle [1], [14], [15], [16], [17].

As was previously mentioned ACO is a nature-inspired
population-based meta-heuristic that models the behaviour
of a colony of ants to solve various optimization problems.
The AS algorithm arose after three initially-proposed ant
algorithms [1] and consists of two main stages (see Fig. 1):
ant solution construction; and pheromone update. These two
stages are repeated until a termination condition is met, e.g.,
until after a set number of iterations have been undertaken
or or until solutions of a predetermined quality have been
constructed. The colony of ants contains m artificial ants. In
the tour construction phase, these m ants construct solutions
independently of each other.

procedure ACOMetaheuristic
set parameters, initialize pheromone levels
while (termination condition not met) do

construct ants’ solutions
update pheromones

end
end

Fig. 1: Overview of the AS algorithm

A. Algorithm setup

Nezamabadi-pour et al. [3] describe the first mapping of
ACO to edge detection utilizing the AS algorithm. An image
can be easily held in memory using a 2D array representation
of a graph. This ‘grid-based’ graph serves as the artificial
landscape for each ant to explore and find edges. To initialize
the algorithm, the input image is read, converted to graph and
each ant is randomly placed on a node. The pheromone trails
(also known as the pheromone matrix) are seeded with the
value 0.0001. Each ant has a limited memory of nodes it is
not allowed to visit again so as to ensure that ants do not get
stuck following the same trail repeatedly. A move is valid if
the node is not currently in the ant’s memory.

B. Solution construction

Once initialized each ant independently moves to a
neighbouring node (horizontally, vertically or diagonally).
Nezamabadi-pour et al. [3] consider one complete iteration
of the algorithm to consist of each ant performing one step (a
move from one node to another) and updating the pheromone
matrix. In ACO ants decide how to construct solutions using
the random proportional rule where each available move is
assigned a probability and where the selection of a move
is proporitionate to the probability [1]. Nezamabadi-pour
et al. [3] adapted the random proportional rule for edge
detection by considering two cases. In the first case, we
consider that the ant has visited all of the neighbouring
nodes and no valid move is currently available: in this case

we simply randomly move the ant to another position on
the graph. In the second case (where there are valid moves
available), each ant surveys the eight neighbouring nodes
(see Fig. 2) so as to determine where next to move. The
probability of visiting a neighbouring node (i, j) from (r, s)
so as to perform a valid move is (or each ant) defined as:

pk(r,s),(i,j) =
[τij]

α[ηij]
β∑

u

∑
v[τuv]

α[ηuv]β
(1)

where: τij is the amount of pheromone currently deposited
on the pixel (i, j); ηij is is the visibility of the node (i, j); and
α and β are user-defined parameters to control the influence
of τij and ηij . The visibility of the pixel (i, j) is defined as:

ηij =
1

IMax
×Max


|I(i− 1, j − 1)− I(i+ 1, j + 1)|,
|I(i− 1, j + 1)− I(i+ 1, j − 1)|,
|I(i, j − 1)− I(i, j + 1)|,
|I(i− 1, j)− I(i+ 1, j)|


(2)

where I is the intensity of a pixel. By applying the simple
pixel mask (see Fig. 2) to each pixel we can determine the
variation in intensities between pixels. Nezamabadi-pour et
al. [3] note that edge pixels should have the highest visibility.
This in turn directly increases the chance of the pixel being
selected by the random proportional rule.

i-1,j-1 i-1,j i-1,j+1

i,j-1 i,j i,j+1

i+1,j-1 i+1,j i+1,j+1

Fig. 2: Surrounding neighbour pixels and valid moves from
position (i, j) (providing none of the surrounding pixels have
recently been visited)

C. Pheromone update

Once each ant has completed its move (or has been
randomly relocated if there were no moves available), the
pheromone matrix must be updated. To avoid stagnation
of the colony, the pheromone level of every node is first
evaporated according to the user-defined evaporation rate ρ.
So, each pheromone level τij becomes:

τij ← (1− ρ)τij . (3)

Over time this allows nodes that are seldom visited to
be forgotten and potentially excluded from the final edge
map which is generated from the pheromone matrix. After

evaporation the pheromone matrix must be updated with the
last move of each ant so as to influence the subsequent
iterations of the algorithm. Each ant deposits an amount of
pheromone on the last node visited so that the pheromone
level τij becomes:

τij ← τij +

m∑
k=1

∆τkij , (4)

D. Termination conditions

The algorithm is executed for a set number of iterations
after which an edge map is generated from the pheromone
matrix [3]. At this stage it is important to note that the
number of iterations is influenced by the number of ants.
If we allow more ants to explore the graph simultaneously
then we can reduce the total number of iterations required.

E. CUDA and the GPU

In 2007 NVIDIA introduced CUDA, a parallel architecture
designed for executing applications on both the CPU and
GPU, along with a new generation of GPUs (G80) with
dedicated silicon to facilitate future parallel programming
[18]. CUDA allows developers to run blocks of code, known
as kernels, directly on the GPU using a parallel programming
interface and using familiar programming languages (such as
C). This broke away from the traditional approach of using
complex graphics interfaces such as Cg to harness the power
of the GPU for general purpose computation.

1) Blocks and threads: The typical architecture of a
CUDA-compatible GPU consists of an array of streaming
multiprocessors (SM), each containing a subset of streaming
processors (SP). When a kernel method is executed, the
execution is distributed over a grid of blocks each with their
own subset of parallel threads. Each thread within a block
is able to communicate with other threads in that block via
shared memory. Within a block, threads execute in parallel in
smaller sub-blocks known as warps, each containing 16-32
threads. There is no guarantee as to the order the warps will
execute in; however, within a warp threads can communicate
directly with each other using warp level primitives.

2) Memory types: CUDA exposes a set of different
memory types to developers, each with unique properties
that must be exploited to maximize performance. The first
type is register memory. Registers are the fastest form
of storage and each thread within a block has access to
a set of fast local registers that exist on-chip. However,
each thread can only access its own registers and as the
number of registers per block is limited, blocks with many
threads will have fewer registers per thread. For inter-thread
communication within a block, shared memory must be
used. Shared memory also exists on-chip and is accessible
to all threads within the block but is slower than register
memory. Newer Kepler CUDA GPUs can also communicate
directly with other threads within their warp using the
new shfl method [19]. For inter-block communication and
larger data sets, threads have access to global (DRAM),
constant and texture memory. Ever since Fermi, access to

global memory is now cached using L1 and L2 caches.
Texture and constant memory also benefit from caching, but
the initial load will be significantly slower than accessing
shared or register memory. When designing a kernel of code
for parallel CUDA execution, it is important to fully and
properly use the three main memory types (register, shared
and global). As Kirk and Hwu note [18], global memory
is slow but often large, whereas shared memory is fast but
extremely limited (up to 64kB). A common optimization is
to load subsets of global memory into shared memory; this
approach is known as tiling.

III. RELATED WORK

In this section we will review existing contributions to
edge detection using ACO. As we cannot include a complete
review of all ACO edge detection papers we will give a
brief overview of the most significant contributions to date
and of the most significant relevance to our research. At the
time of writing we were unable to find any other existing
research into parallel edge detection algorithms using ACO
with NVIDIA CUDA or using other GPU frameworks. For
completeness we will also briefly cover alternative GPU
accelerated edge detection implementations and GPU accel-
erated ACO algorithms for the TSP.

A. Edge detection using Ant Colony Optimization

As was previously mentioned, Nezamabadi-pour et al. [3]
were the first to propose edge detection via ACO. Their main
contribution was the novel mapping of standard ACO com-
ponents (random proportional rule and pheromone update)
to edge detection using the simple AS algorithm. The edge
maps produced were of high quality and the input parameters
for the algorithm did not require modification for different
images. Implementation details and execution times for their
algorithm were not included however Lu and Chen [6] have
subsequently remarked that this initial offering was slow.

Lu and Chen [6] provide an alternative method and focus
their efforts on repairing broken edges and reducing the
work done by the algorithm. When compared against the
implementation by Nezamabadi-pour et al. [3], their results
show that they were able to produce higher quality edge
maps in around half the time. However, the time required to
produce a single edge map was around 1 minute.

Tian et al. [20] detail an improved ACO edge detection
algorithm based on the works of Nezamabadi-pour et al. [3].
Their approach differs by allowing ants to make multiple
moves per each iteration and to update the pheromone levels
after each of these moves and again after all ants have moved.
They detail that the execution time of their implementation
was also around 1 minute. They conclude that a parallel
ACO algorithm could be effectively utilized to decrease the
computational load and thus reduce the total execution time.

Many additional papers have subsequently been presented
however mainly focussing on improving the viability of
the algorithm by increasing the quality of the edge maps
produced over reducing the execution time of the algorithm.

B. Other edge detection methods on the GPU

The Canny edge detection algorithm [4] produces ex-
tremely high quality edge maps and results in more complete
edges than alternative algorithms such as Prewitt or Sobel
due to the inclusion of the hysteresis step. Luo and Du-
raiswami [21] were the first to present a GPU implementation
of the Canny algorithm using NVIDIA CUDA. Their imple-
mentation moved the entire execution of the algorithm to the
GPU which yielded significant speedups over the optimized
sequential counterpart. Luo and Duraiswami [21] detail their
GPU implementation uses a pixel-to-thread mapping. Ogawa
et al. [22] build upon the work of Luo and Duraiswami [21]
and also present a GPU implementation of the Canny algo-
rithm using a simple pixel-to-thread mapping.

Simpler edge detection algorithms such as using the Pre-
witt and Sobel operators have also been implemented in
parallel by NVIDIA [23]; the process of applying one of
the operators via convolution in parallel is simple and uses
pixel-to-thread mapping.

C. ACO on the GPU

In our previous work [9] we presented a highly parallel
GPU implementation of ACO for solving the TSP using
CUDA. By extending the work of Cecilia et al. [11] and
Delv̀acq et al. [12] we adopted a data-parallel approach
that maps individual ants to thread blocks. Our solution
executed up to 82x faster than the sequential counterpart
and up to 8.5x faster than the best existing parallel GPU
implementation. We were able to improve these results by
use of a candidate set [10] to restrict the number of cities
available during tour construction. For a complete review of
all ACO GPU literature to date we direct readers to [9]. We
extend our previous techniques in what follows.

IV. IMPLEMENTATION

In this section we present a parallel implementation a ACO
edge detection algorithm for execution on the GPU using
NVIDIA CUDA. We execute each stage of the algorithm on
the GPU to avoid unnecessary memory transfers.

Building upon our previous contributions [9], [10], we
present a new parallel approach mapping multiple ants to
each thread block on a warp level. Cecilia et al. [11] have pre-
viously shown that mapping individual ants to each CUDA
thread is not effective and following a data-parallel mapping
of one thread per thread block yields improved execution
times. This speedup is due to reducing warp serialization
as a result of eliminating thread divergence caused by each
thread following its own path. When a warp is serialized the
speedup is dramatically reduced and NVIDIA recommends,
as best practice, that this should generally be avoided [7].

Edge detection differs from the TSP as each ant can
potentially move to any city in the graph of size k; however,
with ACO based edge detection each ant can only ever move
to any of the 8 neighbouring pixels (see Fig. 2). The number
of valid moves will also decrease as an ant is not permitted

to revisit a pixel for a set number of iterations (this is to
avoid the ant becoming stuck and not fully exploring the
image). To accommodate the difference in the number of
potentially valid moves, we map each ant to a warp of
threads and execute multiple ants per thread block. This
allows us to ensure all threads within the warp still follow the
same execution path (avoiding warp serialization) but also to
execute more ants per thread block thus reducing the total
number of blocks required. Whilst we could have simply
utilized the previous data-parallel mapping, this would have
left most of the threads in each block idle during execution
and increased execution time due to using more thread
blocks. As was previously shown by Cecilia et al. [11],
mapping a single thread to an individual results in slower
execution times and our initial experiments also found this
to be true for our edge detection implementation. As a result
the following section will only document our warp-level ant
mapping which consistently resulted in the best speedups and
lowest execution times for all of the standard test images.

A. Algorithm setup

As Nezamabadi-pour et al. [3] note, an input image can
be loaded into a 2D array. The color image is then converted
to greyscale using the algorithm shown in Fig. 3. Novak
and Shafer [24] note, around 90% of edges in an image can
be found just using the greyscale values and this approach
produces high quality edge maps.

The image array is later used by the random proportional
rule for determining the visibility of a pixel which in turn
alters the probability of an ant deciding to move to the pixel.
However, as this input image remains static throughout each
iteration of the algorithm we can significantly reduce the
computational load of the algorithm by pre-processing the
pixel visibilities. The visibility of a pixel is calculated using
the variation of intensity around a given point. With existing
implementations each ant must calculate the visibility of all
pixels in the neighbourhood of a pixel for each iteration. This
is a costly operation and unnecessary as the image data does
not change. After loading the image data into an array, we
calculate all pixel visibilities and save the results to a second
array in global memory on the GPU. This array is then used
by each ant when calculating the probability of visiting a
neighbouring pixel thus replacing eight slow global memory
lookups with a single lookup for each pixel.

procedure ColorToGreyscale (red, green, blue)
return (red >>2) + (green >>1) + (blue >>2);

end

Fig. 3: Calculating the greyscale value for a color pixel

A pheromone matrix is allocated in global memory on the
GPU and artificially seeded with the value 0.0001. A second
pheromone matrix is also allocated in global memory. As
each ant is executed in parallel, it can potentially deposit
pheromone to the pheromone matrix before all ants have

made their next move. To accommodate this, after evap-
oration the new values are written to the second matrix.
Each ant then deposits an amount of pheromone on the
second matrix after constructing their solution using an
atomic add operation. In the next iteration of the algorithm
the two pheromone matrices are swapped thus allowing ants
to deposit without impacting the current iteration.

Finally we allocate an array containing the ants. For each
ant we maintain the current position on the image, the current
iteration and a small array for the ant memory. As we are
operating on the warp level we set the length of the memory
array to 32 previous locations matching the size of the warp.
By maintaining the current iteration, we are able to treat
the memory array as a circular array using basic modulo
arithmetic. For example on iteration 48 we would index
position 48 % 32. This allows us to maintain a fast FIFO
queue of previous locations on the image without the need
for additional data structures. Before we enter the solution
construction phase, the ants are randomly placed around the
image. Lu and Chen [6] suggest an alternative to randomly
placing the ants is to place the ants on the end points of edges
extracted using alternative algorithms. However we will use
the simpler random placement for our implementation.

B. Solution construction

In Section II we gave an overview of solution construction
phase of the AS algorithm outlined by Nezamabadi-pour et
al. [3]. In this section we will describe our parallel mapping
of the algorithm to the GPU using CUDA.

Block 1

...

Ant 1

...

Ant 2

...

Ant 3

...

Ant 4

... ...

Block 2

...

Ant 5

...

Ant 6

...

Ant 7

...

Ant 8

... ...

Block N

...

Ant m-3

...

Ant m-2

...

Ant m-1

...

Ant m

... ...

...

Fig. 4: Mapping individual ants to each warp of threads

Our primary contribution in this paper is the novel ant-
to-warp mapping for the tour construction phase. As was
previously mentioned, mapping a single ant to a thread is
ineffective and leads to warp serialization. Mapping a single
ant to each thread block is a wasteful use of the GPU
as most threads will be idle for each iteration. We found
experimentally that packing four ants into a thread block
(using a total of 128 threads) and operating on a warp level

yielded the best results. In Fig. 4 we illustrate our ant warp
mapping for solution construction that is key to the speedup
attained. In Fig. 5 we give an overview of the entire parallel
solution construction phase performed by each ant within a
thread block before detailing each step individually.

procedure SolutionConstruction
Cache the surrounding pixel visibility data
Calculate the probability of visiting local pixels
Check if the local pixels have already been visited
Perform reduction on the pixel probabilities
Perform roulette wheel selection on the probabilities
Update the ants current position

end

Fig. 5: An overview of solution construction

First the pre-calculated visibility values (as previously
described) of the 8 neighbouring pixels are cached into
shared memory. As we are operating on a warp level, the
remaining 24 threads load in the same data to avoid warp
divergence. As the values are cached in the L1 cache, this
operation is faster than branching the warp.

After the visibility data is cached to shared memory, each
thread loads the previously visited position from the ant’s
memory into a local register. As the size of the memory
is limited to 32 previous positions each thread will load one
value from the array. For example, thread 9 will load position
9 from the array and so on. This will later allow the warp
to quickly check if a position has recently been visited.

Each of the first 8 threads in the warp then calculate the
probability of visiting one of the the neighbouring pixels
using the random proportional rule described in Section II.
The probabilities calculated are saved to an array in shared
memory. Each thread in the warp then checks if the previ-
ously visited pixel cached in its register is a valid move. If a
thread finds that the move has recently been made it replaces
the probability of visiting that pixel with 0. A warp-level
reduction is then performed on the probability array returning
the total of all the probability values. At this point the first
thread checks if the total value returned is greater than 0 and
if not the thread picks a new random location for the ant to
move to (also saving this to the ants memory).

TABLE I: Roulette wheel selection

input reduced normalized range
0.1 0.1 0.1 > 0.0 & ≤ 0.1
0.3 0.4 0.25 > 0.1 & ≤ 0.25
0.2 0.6 0.375 > 0.25 & ≤ 0.375
0.8 1.4 0.875 > 0.375 & ≤ 0.875
0.2 1.6 1.00 > 0.875 & ≤ 1.0

If the total is greater than 0 the first thread then calculates
a random number in the range of 0 to 1 saving this to
shared memory. The first 8 threads then apply roulette wheel
selection (proportionate selection) to select the next pixel to
move to. Using the previously reduced probability array in
shared memory (and total value previously returned) each

thread normalizes the probability of its respective pixel
bringing the probability into the range of 0 to 1 (see Table I).
After the values are normalized each of the 8 threads then
checks if the previously generated random number lies within
the range for that pixel. If the thread determines that its pixel
has been selected then the ant’s current position is updated.
This parallel implementation thus handles both cases for
solution construction outlined by Nezamabadi-pour et al. [3].

C. Pheromone update

The second stage of the AS algorithm is pheromone update
which consists of two stages: pheromone evaporation; and
pheromone deposit. The pheromone update stage represents
a very small proportion of the total execution time and thus is
not the main focus of this paper. As we previously noted [9],
the pheromone evaporation stage (see equation 3) is trivial
to parallelize as all points on the matrix are evaporated by
a constant factor ρ. We adopt the same efficient parallel
strategy previously demonstrated [9] where a single thread
block is launched which maps each thread to position on the
pheromone matrix and decreases the value using ρ. A tiling
strategy is used to ensure full coverage of all positions on
the matrix. Each ant then deposits an amount of pheromone
proportional to the quality of its move onto the pheromone
matrix. As previously noted, we utilize two pheromone ma-
trices (alternating between primary and secondary) to ensure
that ants deposit to a matrix not currently being read by
other ants. Each ant deposits an amount of pheromone to the
second pheromone matrix using the operation atomicAdd()
(for thread safety) which takes the previous value on the
matrix and adds the new value.

V. RESULTS

In this section we will discuss our experimental setup,
algorithm parameters chosen, quality of the edge maps
obtained via our parallel implementation and finally the
execution times observed.

A. Experimental setup

For testing our implementation we use an NVIDIA GTX
580 GPU (Fermi) and an Intel i7 950 CPU (Bloomfield). The
GPU contains 580 CUDA cores and has a processor speed of
1544 MHz. As the card is from the Fermi generation, it uses
32 threads per warp and up to 1024 threads per thread block
with a maximum shared memory size of 64 Kb. The CPU
has 4 cores which support up to 8 threads with a clock speed
of 3.06 GHz. Our implementation was written and compiled
using the latest CUDA tooklkit (v5.0) for C and executed
under the latest stable Ubuntu release (v13.10).

B. Algorithm parameters

To ensure a fair comparison of the edge maps produced
via our implementation, we use the same parameters as
defined by Nezamabadi-pour et al. [3] with the exception of
modifying the number of ants and iterations. Nezamabadi-
pour et al. define the number of ants and iterations to be
proportionate to the root of the size of the image. For

example, an image of size 512×512 would have a total of
512 ants performing 512 iterations before producing an edge
map (a total of 262144 moves). We found experimentally
that executing more ants per iteration for fewer iterations
yielded edge maps of comparable quality and was a better
fit for the parallel architecture. There is an implicit overhead
when scheduling a kernel for execution on the GPU and by
increasing the number of ants (thus increasing the number
of thread blocks) we can reduce the number of kernel
executions. This approach will also scale automatically to
CUDA devices with more CUDA cores which will further
decrease the execution time. For a 512×512 image we use
3000 ants for a maximum of 50 iterations (a total of 150000
moves). The remaining algorithm parameters are as follows:

• α = 2.5
• β = 2
• ρ = 0.04
• Ant memory length = 32
• Edge threshold = mean image intensity

C. Solution quality

To ensure our implementation provided edge maps compa-
rable to the original algorithm by Nezamabadi-pour et al. [3],
we tested against the standard test images (Lena, Peppers
etc.). Our parallel solution was able to match and often im-
prove the quality of edge maps produced. In Fig. 6 we show
the edge maps produced by the Sobel operator, the Canny
edge detector and our parallel ACO implementation. The
edge maps produced for Canny and Sobel were generated
via the Image Processing toolbox in MATLAB [25].

(a) Original (b) Sobel

(c) Canny (d) Our solution

Fig. 6: A comparison of edge maps produced by the Sobel,
Canny and our parallel ACO edge detection algorithms

We found experimentally that by increasing the number of
ants (whilst keeping the iteration count static) we were able
to increase the thickness of the edges produced. Over time

ants settle on the major edges in the image due to deposits on
the pheromone matrix. As more ants are added to the image
this effect is amplified creating a stylized effect. In Fig. 7 we
show the edge maps produced when using 1500 ants, 3000
ants (standard), 4500 and 6000 ants.

(a) 1500 ants (b) 3000 ants

(c) 4500 ants (d) 6000 ants

Fig. 7: The effect on edge thickness when alternating the
number of ants in a 512x512 image

D. Benchmarks

In Section IV we detailed the various mappings for ACO
on the GPU. The simplest of the mappings uses a single
CUDA thread for each ant, the second mapping uses a whole
CUDA thread block for each ant and the third mapping
uses a single thread warp per ant (with multiple ants per
CUDA block). Our results (shown in Table II) show that the
different approaches yield significantly different results. The
execution times detailed are for both the solution construction
and pheromone update stages of the AS algorithm.

TABLE II: Average execution times (ms) when varying the
number of threads per block

Threads per block Ant-to-thread Ant-to-block Ant-to-warp
64 62.679 21.435 10.693
128 63.025 18.233 6.531
256 62.858 18.433 8.884
512 62.601 18.431 9.308
768 64.845 18.973 9.597

The first mapping (although the simplest to implement)
produced the worst results and varying the number of threads
per block did little to change this. As Cecilia et al. [11]
note, this simple mapping is not suited to ACO as the
solution construction phase results in warp divergence which
increases the overall execution time. As expected the second
data-parallel mapping produced significantly better results
and executed in around a third of the time of the first

mapping. The third approach which utilized our ant-to-warp
mapping consistently produced the best results. The mapping
performed best when using 128 threads (4 ants using 4 warps
of 32 threads per CUDA thread block).

In our ant-to-warp implementation each thread in the warp
caches a value of a recently visited city to shared memory.
This later allows the warp to quickly check if a neighbouring
pixel is still valid or has been visited recently. As Fermi
generation GPUs automatically cache values to the L1 cache
we observed the execution times of manually caching values
to the shared memory versus relying on the L1 cache (see
Fig. 8). The results show that manually caching the values
is still considerably faster and necessary to obtain the best
possible speedups.

 0

 10

 20

 30

 40

 50

 60

64 128 256 512 768

E
x
e

c
u

ti
o

n
 t

im
e

 (
m

s
)

Threads per block

With shared memory

Withshared memory

Fig. 8: Observed execution speeds for the ant-to-warp map-
ping with/without caching visited positions to shared memory

An ant placed on an input image has no perceivable
concept of difficulty and will explore an image irrespective
of the number of edges on the image. As a result we found
that unlike with other edge detection algorithms (such as the
Canny edge detector) varying the input image had little effect
on the overall execution time of the algorithm.

Finally, we compared the results of executing our ant-to-
warp mapping implementation against an optimized sequen-
tial counterpart. We found that the sequential implementation
took just under 1000ms to execute compared against 6.531ms
for the best thread configuration for our parallel CUDA
version. This represents around a 150x speedup for our GPU
implementation against the optimized CPU implementation.

VI. CONCLUSIONS

In this paper we present the first parallel ACO edge
detection implementation for execution on the GPU. By
extending our previous contributions we are able to adapt
the data-parallel GPU ACO mapping for edge detection.
By harnessing the massively parallel nature of the GPU we
reduced the number of iterations required to produce the edge
map and increased the number of ants per iteration. Our
implementation is able to match the quality of edge maps
produced by the sequential implementation and executed
up to 150x faster. Our future work will aim to implement
parallel versions of other ACO algorithms so as to increase
the quality of edge maps produced.

ACKNOWLEDGEMENTS

The authors would like to thank Hossein Nezamabadi-pour
and Fateme Darake for providing the MATLAB source code
of the implementation in [3]. This allowed us to verify the
validity of our GPU implementation and ensure we were able
to match the quality of edge maps generated.

REFERENCES

[1] M. Dorigo and T. Stützle, Ant Colony Optimization. MIT Press, 2004.
[2] V. Maniezzo and A. Colorni, “The Ant System applied to the Quadratic

Assignment Problem,” IEEE Transactions on Knowledge and Data
Engineering, vol. 11, no. 5, pp. 769–778, 1999.

[3] H. Nezamabadi-pour, S. Saryazdi, and E. Rashedi, “Edge Detection
using Ant Algorithms,” Soft Computing, vol. 10, no. 7, pp. 623–628,
2006.

[4] J. Canny, “A Computational Approach to Edge Detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-8, no. 6, pp. 679–698, 1986.

[5] A. V. Baterina and C. Oppus, “Image Edge Detection Using Ant
Colony Optimization,” WSEAS Transactions on Signal Processing,
vol. 6, no. 2, pp. 58–67, 2010.

[6] D.-S. Lu and C.-C. Chen, “Edge detection improvement by ant colony
optimization,” Pattern Recognition Letters, vol. 29, no. 4, pp. 416–425,
2008.

[7] NVIDIA, “CUDA C Programming Guide,”
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
(last accessed 10/01/2014).

[8] ——, “CUDA for ARM Platforms is Now Available,”
https://developer.nvidia.com/content/cuda-arm-platforms-now-
available (last accessed: 10/01/2014).

[9] L. Dawson and I. Stewart, “Improving Ant Colony Optimization
performance on the GPU using CUDA,” in IEEE Congress on Evolu-
tionary Computation (IEEE-CEC’13). IEEE, 2013, pp. 1901–1908.

[10] L. Dawson and I. A. Stewart, “Candidate Set Parallelization Strategies
for Ant Colony Optimization on the GPU,” in 13th Int. Conf. on
Algorithms and Architectures for Parallel Processing (ICA3PP’13),
ser. Lecture Notes in Computer Science, vol. 8285. Springer, 2013,
pp. 216–225.

[11] J. M. Cecilia, J. M. Garcı́a, A. Nisbet, M. Amos, and M. Ujaldon,
“Enhancing data parallelism for ant colony optimization on GPUs,”
Journal of Parallel and Distributed Computing, vol. 73, no. 1, pp.
42–51, 2013.

[12] A. Delèvacq, P. Delisle, M. Gravel, and M. Krajecki, “Parallel ant
colony optimization on graphics processing units,” Journal of Parallel
and Distributed Computing, vol. 73, no. 1, pp. 52–61, 2013.

[13] J. Fu, L. Lei, and G. Zhou, “A parallel Ant Colony Optimization al-
gorithm with GPU-acceleration based on All-In-Roulette selection,” in
Third Int. Workshop on Advanced Computational Intelligence (IWACI).
IEEE, Aug. 2010, pp. 260–264.

[14] M. Dorigo, “Optimization, learning and natural algorithms,” Ph.D.
dissertation, Dipartimento di Elettronica, Politecnico di Milano, Milan,
Italy, 1992.

[15] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo, “Parallel ant
colony optimization for the traveling salesman problem,” in Fifth
Int. Workshop on Ant Colony Optimization and Swarm Intelligence
(ANTS), ser. Lecture Notes in Computer Science, vol. 4150. Springer,
2006, pp. 224–234.

[16] T. Stützle, “Parallelization Strategies for Ant Colony Optimization,” in
Fifth Int. Conf. on Parallel Problem Solving from Nature (PPSN-V),
ser. Lecture Notes in Computer Science, vol. 1498. Springer-Verlag,
1998, pp. 722–731.

[17] T. Stützle and H. H. Hoos, “MAX-MIN ant system,” Future Genera-
tion Computer Systems, vol. 16, no. 9, pp. 889–914, 2000.

[18] D. Kirk and W.-M. W. Hwu, Programming Massively Parallel Pro-
cessors: A Hands-on Approach. Morgan Kaufmann Publishers Inc.,
2010.

[19] NVIDIA, “Inside Kepler,” http://developer.download.nvidia.com/GTC/
PDF/GTC2012/PresentationPDF/S0642-GTC2012-Inside-Kepler.pdf
(last accessed 18/01/2014).

[20] J. Tian, W. Yu, and S. Xie, “An ant colony optimization algorithm for
image edge detection,” in IEEE Congress on Evolutionary Computa-
tion (IEEE-CEC’08). IEEE, 2008, pp. 751–756.

[21] Y. Luo and R. Duraiswami, “Canny Edge Detection on NVIDIA
CUDA,” in Computer Vision and Pattern Recognition Workshops
(CVPRW’08). IEEE, 2008, pp. 1–8.

[22] K. Ogawa, Y. Ito, and K. Nakano, “Efficient Canny Edge Detection
Using a GPU,” in First Int. Conf. Networking and Computing (ICNC.
IEEE, 2010, pp. 279–280.

[23] NVIDIA, “Image Convolution with CUDA,”
http://goo.gl/ybdGbQ (last accessed 10/01/2014).

[24] C. Novak and S. Shafer, “Color edge detection,” in Proc. DARPA
Image Understanding Workshop, vol. 1. Morgan Kaufmann, 1987,
pp. 35–37.

[25] MathWorks, “Image Processing Toolbox,”
http://www.mathworks.co.uk/products/image/ (last accessed
10/01/2014).

