大陆碰撞造山带的两类橄榄岩——以柴北缘超高压变质带为例

宋述光1，张立飞1，牛耀龄2，张贵宾1

1. 北京大学 造山带和地球演化教育部重点实验室，地球与空间科学学院，北京 100871
2. Department of Earth Science, Durham University, Durham, DH1 3LE, UK

Song Shuguang1, Zhang Lifei1, Niu Yaoling2, Zhang Guibin1

1. MOE Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
2. Department of Earth Science, Durham University, Durham, DH1 3LE, UK

Abstract: This paper gives a brief review of the characteristics and petrogenesis of mantle peridotite in continental subduction and collision belts, and then discusses in more detail the petrogenesis of peridotites in the North Qaidam ultrahigh pressure (UHP) metamorphic belt. There are two types of peridotites within this UHP belt. (1) Garnet peridotite consists of garnet Iherzolite, garnet-bearing dunite, garnet-free dunite and garnet pyroxenite, which could be considered as one of the critical rock types in a continental-type subduction zone. Observations such as diamond inclusion in a zircon crystal and decompression exsolutions in garnet and olivine, together with geothermobarometric calculations, argue persuasively that this garnet peridotite must have derived from mantle depths greater than 200 km. Geochemical data reveal that the protolith of the garnet peridotite was of cumulate origin from high-Mg melts in a sub-arc mantle wedge environment. (2) Oceanic lithospheric mantle harzburgite occurs together with meta-cumulate complex (including garnet pyroxenite and kyanite-eclogite) and MORB-related eclogite; these represent blocks of oceanic lithosphere. The determination of these two types of peridotites allows us to better understand the nature and tectonic processes of the North Qaidam UHP belt.

Key words: peridotite; continental subduction and collision belt; ultrahigh-pressure metamorphism; North Qaidam

摘 要：论述了大陆俯冲碰撞带中地幔橄榄岩的基本特征和成岩类型，并重点讨论柴北缘超高压变质带中不同性质的橄榄岩及其成因。根据岩石学特征，我们确定柴北缘超高压带中发育有两类橄榄岩：(1) 石榴橄榄岩，岩石类型包括石榴二辉橄榄岩、石榴方辉橄榄岩、纯橄榄岩和榴辉岩，是大陆型俯冲带的标志性岩石。金刚石包裹体、橄榄石和橄榄岩的出溶结构、温压计算等均反映其来源深度大于 200 km。地球化学特征表明该橄榄岩的原岩是岛弧环境下高镁岩浆在地幔环境下堆晶的产物。(2) 大洋蛇绿岩型地幔橄榄岩，与变质的堆晶杂岩(包括石榴辉石岩、蓝晶石榴辉岩)和具有大洋玄武岩特征的榴辉岩构成典型的蛇绿岩剖面，代表大洋岩石圈残片。这两类橄榄岩的确定对了解柴北缘超高压变质带的性质和构造演化过程有重要意义。

收稿日期：2006-10-31; 修回日期：2006-12-05
基金项目：国家自然科学基金资助项目（40372031, 40228003, 40325005）; 国家重点基础研究发展规划“973”项目（G1999077508）
作者简介：宋述光（1963—），男，博士，副教授，从事岩石学与板块动力学研究。E-mail：sgsong@pku.edu.cn
关键词：橄榄岩；大陆俯冲带；超高压变质；柴北缘

中图分类号：P588.12；P542.5 文献标识码：A 文章编号：1005-2321（2007）02-0129-10

大陆碰撞造山带是古板块运动和大陆拼合的产物。根据岩石组合、高压超高压变质特征，地球上发育的俯冲碰撞带可以划分为环太平洋型（或 B 型）和阿尔卑斯型（或 A 型）[1-2]。Song 等（2006）[3]将俯冲碰撞带划分为大洋型（oceanic-type）和大陆型（continental-type）。人们所普遍接受的事实上，是大洋岩石圈俯冲消亡之后，大陆岩石圈在俯冲的大洋岩石圈拖曳力的作用下俯冲到另一大陆岩石圈之下，当大洋岩石圈与大陆岩石圈断离后，大陆地壳物质由于浮力而折返。新生代以来的喜马拉雅和阿尔卑斯造山带给我们展示了很好的例证。

高压超高压变质带是古板块汇聚边界及大陆碰撞造山的重要标志，它记录了地壳物质从俯冲到构造转折的一个完整的动力学过程[4-8]。大洋型俯冲带的岩石组合代表了大洋-岩石圈俯冲过程中的产物，其岩石类型主要包括：大洋岩石圈边缘形成的蛇绿岩片岩、低温高压变质形成的蓝片岩和榴辉岩（尤其是以含硬柱石的榴辉岩为特征——反映大洋冷俯冲过程）、变质岩浆岩以及相应的古老变质作用遗迹等。构造带，其中代表性的例子有环太平洋俯冲带、我国的北祁连山和西天山等古陆规模带。大陆型俯冲碰撞带的岩石组合与大洋型明显不同，主要包括：具有大陆地壳成分的长英质片麻岩及其内部呈透镜体或构造体产出的榴辉岩、大理岩、石榴石片岩和石榴橄榄岩等，典型地区包括我国的大别-苏鲁超高压变质带，挪威的 Western Gneiss Region，哈萨克斯坦的 Kokchetav 超高压变质带等。

橄榄岩在大陆型超高压变质带中所占比例很小，但它是大陆俯冲带中具有重要构造意义的组成部分。作为大陆型俯冲带标志的石榴橄榄岩在世界各典型的超高压变质带中都有出现，如我国东部的太平洋环太平洋型[1-3]、西部的阿尔金榴辉岩地带[4-5]、欧洲的加里东带（挪威的 WGR 地体[6-8]）、华力西和阿尔卑斯造山带[9-20]、哈萨克斯坦的 Kokchetav 地带[21]、印度尼西亚的 Sulawesi 地体[22]以及我国西部黎北缘超高压变质带[23-27]。该类岩石记录了大陆俯冲、折返以及俯冲的洋及后来的大洋板块与俯冲带之上地幔楔相互作用等方面的关键信息。因此，有关超高压变质带石榴橄榄岩的结构，对于深入理解和探讨大陆俯冲的深度、俯冲和折返的动力学机制，以及俯冲带与地幔楔的相互作用等方面都具有重要意义。随着对大陆俯冲带研究的深入，自 20 世纪 90 年代以来与大陆造山有关的石榴橄榄岩成为地质科学研究的前沿和热点。

1 大陆造山带中橄榄岩的类型、成因和形成深度

1.1 大洋型俯冲带的地幔橄榄岩

大洋型俯冲带中橄榄岩的类型比较简单，主要是代表大洋或弧后扩张形成的岩石圈地幔橄榄岩，并常与上覆的堆状杂岩和枕状玄武岩以及洋深沉积物等紧密共生而构成蛇绿岩。部分呈独立的构造岩块分布于高压变质带中。由于洋中脊和俯冲带的侵蚀，绝大部分橄榄岩已被强烈地蛇纹石化，只有少量规模较大的地壳保留有新鲜的橄榄岩，如雅鲁藏布缝合带中的部分橄榄岩体[28-30]、西昆仑的库地橄榄岩体[31]，阿尔卑斯的 Lanzo 岩体[32]和北祁连山的玉石沟橄榄岩体[33-35]。

不同时代缝合带地幔橄榄岩体在岩性上基本一致，主要为方辉橄榄岩（harzburgite）、少量辉橄榄岩（lherzolite），它们是扩张脊（大洋或弧后盆地）之下软流圈物质部分熔融形成洋壳之后的残余（residue），单斜辉石含量的变化反映地幔源区部分熔融的程度[34]。值得注意的是，纯橄榄岩并不是地幔岩部分熔融之后的残渣，因为在洋中脊的温度条件下软流圈物质要达到 40% 以上的熔融是不可能的。在蛇绿岩剖面中纯橄榄岩具有两种产出状态。

（1）1 岩浆侵入体或洋流带分布于方辉橄榄岩中，它们是作为岩浆萃取的通道，是通过熔体与方辉橄榄岩之间发生反应而形成的[35]，并可以用下面的反应式来反映橄榄岩的沉淀过程：

\[
\text{Cpx} + \text{Opx} + \text{Sph} = \text{Ol} + 1.0 \text{ Melt}
\]

（2）2 纯橄榄岩可以作为洋岛或山脊的岩石堆形成于堆状岩体的底部，在 Oman 岩绿岩剖面辉长岩带与蛇纹橄榄岩带的纯橄榄岩厚度约 1 km，这些纯橄榄岩与上部橄榄岩主要由 Ni 和 Mg 有明显降低；岩石中常有 Cpx、Opx 的陨石成分，因而被解释为下部洋壳辉长岩单元底部的超镁铁堆状岩。有的学者通过橄榄岩和矿物地球化学研究[36-38]认为
为，这些纯橄榄岩层是幔源熔体上升至 Moho 面发生侧向有效流动，与地幔岩相互作用而形成的。

因此纯橄榄岩不是地幔部分熔融之后的残渣，即纯橄榄岩不是真正意义上的地幔橄榄岩，而是熔体沉降或熔体与方辉橄榄岩反应的产物。另外，“纯橄榄岩浆”的概念也是错误的，而且在自然中并不存在。

1.2 大陆型超高压变质带中的橄榄岩及其成因

广泛出露于大陆造山带中的橄榄岩体曾被称之为“山根带”橄榄岩（orogenic root-zone peridotite）或“阿尔卑斯型”（Alpine-type）橄榄岩，这些橄榄岩体大部分是形成压力较低的尖晶石橄榄岩及其退化和变质的蛇纹岩。但这些定义比较笼统，涵盖了可能是大洋蛇纹岩区中地幔橄榄岩以及大陆型俯冲碰撞带中橄榄岩的成分。因此，我们要谨慎使用这些概念。

在超高压变质带中，石榴橄榄岩在造山带的产出极少，仅局限于榴辉岩和其他高级变质的陆壳岩石组成的超高压变质带中，其产状与榴辉岩类似，呈大小不等的透镜状岩块分布于英质片麻岩中。其主要岩石类型包括石榴二辉橄榄岩、石榴方辉橄榄岩、纯橄榄岩和石榴辉石岩。O’Hara 和 Mercy[41]报道挪威加里东带 Western Gneiss Region (WGR) 地体的石榴橄榄岩，引起人们的关注并进行了较深入的研究工作[16,18,42-43]。早期的研究者普遍认为产于地壳岩石中所有石榴橄榄岩都来源于上地幔，但主要的争论集中在岩石的侵位机制和石榴石的稳定条件方面。O’Hara 等[44]的实验证明，在正常地壳厚度的压力条件下，石榴石在橄榄岩中是不稳定的矿物相，因此，石榴橄榄岩形成深度应该在地幔环境。根据岩石的成分，有人将石榴橄榄岩划分为 Mg-Cr 型和 Fe-Ti 型两大类，并提出两种与大陆板块碰撞有成因联系的假说来解释这些出现在地壳岩石中的石榴橄榄岩[17,45]：(1) 直接来自于上地幔并构造侵位于加厚的大陆地壳之中；(2) 先期侵位于大陆地壳的尖晶石橄榄岩或其他蛇纹岩经递进的高压变质作用改造而成。根据近几年的研究，对于 Fe-Ti 系列石榴橄榄岩成因的观点比较一致，由于该类型石榴橄榄岩与石榴辉石岩和榴辉岩等构成较为完整的岩浆序列，因此一般认为它们是先期侵入到大陆地壳中的增生杂岩后经超高压变质的产物，如大别山的碧溪岭。目前比较公认的是石榴橄榄岩形成的构造背景有三种[19-20]：(1) 来源于俯冲大洋岩石圈或大陆岩石圈地幔以及软流圈上涌；如

欧洲华力西造山带 Bohemian 地体（亏损的大洋地幔[46]）、挪威加里东带 West Gneiss Region (WGR) 地体（古老的大陆地幔[46-47])；(2) 在俯冲过程中捕获俯冲带之上地幔楔，该类型石榴橄榄岩分布于上述各超高压带体中[18,20-48]；(3) 大陆地壳中基性超基性侵入体在俯冲过程中超高压变质的产物，其中包括 Mg-Cr 系列橄榄岩（如苏鲁的芝麻坊[11]）和 Fe-Ti 系列基性层状杂岩体（如大别山碧溪岭[12]）。

1.3 大陆型超高压变质带中石榴橄榄岩的形成深度

志矿物为超硅石榴石（super-silicic 或 majoritic garnet），该矿物只稳定于压力 > 5 GPa 的环境[52-63]，并在低压条件下 SiO不稳定而发生辉石出溶，这种出溶结构分别在挪威 WGR[64-65]，阿尔金石榴橄榄岩[66]，和片麻岩[14]，柴北缘的石榴橄榄岩[21]，苏鲁石榴橄榄岩和石榴辉石岩[67-68]和辉辉岩[69]以及希腊 Rhodope 片麻岩（石榴岩中石英出溶片晶[70]）中都有报道，证明这些地区的大陆俯冲深度大于 200 km，甚至到 300 km[71]。

2 柴北缘超高压变质带的地质背景

柴北缘超高压变质带是 20 世纪 90 年代以来确立的一条含榴辉岩和石榴橄榄岩的大陆深俯冲带，并引起世人的广泛关注。该超高压变质带自东向西断续出露有都兰榴辉岩地体，锡铁山榴辉岩地体，绿梁山石榴橄榄岩地体和鱼卡（大柴旦）榴辉岩地体，延伸约 400 km，向西与南阿尔金榴辉岩地体构成了中国西部早生代大陆碰撞带[72-74]。带内岩石类型包括花岗质片麻岩和含榴质片麻岩大小不等的榴辉岩岩块、含石榴石和不含有榴石的橄榄岩岩块。副片麻岩质石中石榴英包裹体[75-77]，榴辉岩中石榴石英假象[77]，石榴橄榄岩质石中金刚石包裹体[25]及石榴石中出溶片晶[21-26]，岩石组合和变质作用证明柴北缘是一典型的、由大陆岩石圈深俯冲形成的“大陆型”超高压变质带[3]。

3 柴北缘超高压变质带中蛇绿岩型橄榄岩

通过对都兰超高压变质地体东侧沙柳河剖面进行的详细岩石学解剖，我们进一步发现了最典型的古大洋蛇绿岩型地幔橄榄岩——蛇纹石化方辉橄榄岩[51]。沙柳河剖面的北侧主要由条带状蓝晶石榴辉岩和蛇纹石化方辉橄榄岩组成，条带状蓝晶石榴辉岩的岩石学和地球化学特征显示其原岩具有明显的堆辉辉岩化特征。方辉橄榄岩的原始矿物组合为橄榄石 + 斜方辉石 + 铁镁铁矿。

在该蛇纹石化方辉橄榄岩中，我们识别出两个世代的橄榄石，第一世代橄榄石 (O1) 残晶发育扭折带，其 Fo 值为 88～91，化学成分与现代大洋地幔橄榄岩的橄榄石一致；第二世代橄榄石 (O2) Fo 值高达 94～97，其内部含有细小的流体包裹体，是第一世代橄榄石蛇纹石化后再次变质的产物，应该与辉辉岩超高压变质一致。斜方辉石残晶被滑石呈状体所包围，其矿物成分具有高 Al (Al2O3 的质量分数达 2.7%～4.4%) 特征，与现代大洋地幔橄榄岩中斜方辉石的成分一致，其形成压力远远低于柴北缘和苏鲁超高压石榴橄榄岩的形成压力。而斜方辉石中密集出现的单斜辉石出溶片晶反映其原始成分具有高的 CaO 含量，反映其形成的温度 t > 1100 ℃。温压条件的估算反映该橄榄岩体属于典型的尖晶石相方辉橄榄岩。其围岩是由堆辉辉岩长岩变质的条带状蓝晶石榴辉岩，两者构成了大洋蛇绿岩套的下部层次，并且与区内具有 N-MORB 和 OIB 性质的榴辉岩共生。

4 柴北缘超高压变质带的石榴橄榄岩——大陆深俯冲的证据

石榴橄榄岩是“大陆型”超高压变质带典型标志，在柴北缘主要分布于青海省大柴旦镇以北的绿梁山一带，以构造岩块产于花岗质片麻岩中。石榴二辉橄榄岩在岩体中占 70%～80%（体积分数），与纯辉岩互层，石榴辉石岩呈脉状产出。该石榴橄榄岩是大陆俯冲带超高压变质岩石的重要组成部分。

4.1 石榴橄榄岩形成深度 > 200 km 的证据

4.1.1 石榴石“辉石+金红石”出溶片晶

Song 等(2004)[21]首次报道了在柴北缘石榴橄榄岩岩体中石榴石的石榴石橄榄岩中发现的大量出溶片晶。其中，石榴石的出溶片晶包括高密度的金红石、斜方辉石、单斜辉石。金红石出溶片晶呈针状，长度可达 500 μm。背散射图像显示石榴石中金红石

石出溶液局部可达1.0%（体积分数）。

辉石出溶液晶与金红石晶紧密共生，其形态在纵切面为长柱状，在横切面上大部分呈六边形。

电子探针分析显示方辉石晶与基质的成分相近，但单斜辉石晶明显比Na（Na_{2}O质量分数＞3.0%）。背散射图像显示辉石出溶液晶在石榴石中体积百分比可达4.5%，说明石榴石的原生成分具有超硅的特征。这种超硅石榴石只可在超过150 km深度条件下稳定存在。辉石出溶液晶的出溶说明柴北缘超高压变质带石英橄榄岩中存在超硅石榴石，而超硅石榴石被认为是大陆岩石圈俯冲到大于180～200 km地幔深度的至关重要的证据。

4.1.2 石榴石中“钠质闪石＋金红石”出溶液晶

Song等（2005）[26]在柴北缘石英橄榄岩的石榴石中又发现大量钠质闪石的出溶液晶与金红石共生或共生。石榴石中闪石和金红石出溶液晶都严格沿石榴石主晶的{111}方向定向分布。电子探针成分分析表明角闪石出溶液晶有富Na和富贫Ca两种，二者都具有高Na（Na_{2}O质量分数为4.0%～7.2%）的成分特征。通过高分辨率透射电镜对其结构进行的深入研究表明，出溶液晶的晶格与石榴石呈明显的拓扑关系，证明石榴石在降压过程中出溶的产物。石榴石中富钠角闪石出溶在世界上属首次发现，其重要科学意义主要有两个方面：

（1）原始石榴石中含大量OH，根据闪石的出溶液算，OH的含量可达1000×10^{-6}，对于揭示地幔楔性质的含水性以及俯冲带H_{2}O的赋存状态具有重要意义；

（2）原始石榴石中高含钠的Na、Ti、Si，在超低压条件下，Na_{2}Ti_{2}Si_{2}Ca_{2}Al_{2}。计算获得石榴石的Na_{2}O质量分数可达0.3%。

其形成压力p>7 GPa，形成深度大于200 km。

4.1.3 石榴石中“钛铁矿＋Al-铬铁矿”出溶液晶

Song等（2004）[24]报道了柴北缘石英橄榄岩的橄榄石中发育密集的钛铁矿（（Fe,Mg）TiO_{2}）棒状出溶体，这些出溶液晶长20～100 μm，宽0.3～1.5 μm，严格按橄榄石主晶的[010]分布。背散射图像显示出溶液晶最高含量可达1.18%，说明原始橄榄石的TiO_{2}质量分数可达0.69%。一般认为，Ti、Cr、Al、Fe^{3+}在橄榄石中是不相容元素，在低压下很难进入变橄榄石的晶格中。Dobrzynetskaya等（1999）通过实验结果，当温压条件从5 GPa、1400 K增加到8～12 GPa、1400～1700 K时，橄榄石中TiO_{2}的质量分数从0.4%增加到2%。因此，橄榄石中（Fe，Mg）TiO_{2}含量说明柴北缘石英橄榄岩形成深度＞7 GPa。

铁钛矿出溶液晶中高含量的MgTiO_{2}说明了铁钛矿中Mg替代Fe，也可能是与超高压有关[85]。

另外，橄榄石含有高达0.6%（体积分数）的Al-铬铁矿，说明部分橄榄石富Al和Cr。橄榄石中Al组分向出溶的Al-铬铁矿暗示其原始结构可能具有类似尖晶石的结构特征（β相橄榄石 ［wadsleyite-type］）。橄榄石—β橄榄石转变证实了这一点。在高压条件下，三价离子如Cr和Al可以通过2Cr（Al）替代Mg和Si而进入β橄榄石结构中[86]。在一些金属石的橄榄石包体也发现Al-铬铁矿出溶，被认为是β橄榄石向橄榄石转化过程中形成的[86]。因此，石榴石和橄榄石的出溶特征说明柴北缘石英橄榄岩的形成深度大于7 GPa。

4.1.4 钍石中金刚石包裹体

通过对柴北缘石英橄榄岩的包裹体的激光拉曼研究，我们首次发现石榴石共生的微粒金刚石和石墨包裹体[25]，从而进一步证实了石榴石橄榄岩的形成深度大于150 km。这是世界范围内所有超高压变质带中石英橄榄岩体内发现的第二颗，也是在柴北缘超高压变质带发现的第一颗金刚石包裹体。

4.2 橄榄石的年龄；柴北缘超高压变质带的确定

柴北缘超高压变质带的超高压变质时代一直是人们所关注的问题，虽然已有很多榴辉岩和片麻岩锆石 SHRIMP、Sm-Nd 以及 Ar-Ar 年龄的报道[78,80,87,88]，但所报道的数据差别较大，并且不确定是否经过了超高压变质，因此柴北缘的超高压变质年代并不清楚。

为了确定柴北缘超高压变质的时代，Song等（2005）[25]选择了绿梁山石英橄榄岩岩体中的石榴二辉橄榄岩和含石榴石橄榄岩两个样品进行了锆石的分选和SHRIMP定年工作。阴极发光图像显示锆石具有明显的核-幔-边结构，其核部发育岩浆
晶的振荡带，说明其原岩是岩浆结晶的产物，而幔部和邻部是变质过程中生长或流体改造。锆石 SHRIMP 定年结果显示橄榄二辉橄榄岩中锆质主要由 4 组年龄：(a)具岩浆结构的幔部年龄为(457±22)Ma，是与早期大洋俯冲有关的高镁熔体结晶的产物；(b) 锆石幔部具有石榴石、金刚石、辉石等包裹体，其 11 个测点的平均年龄为(423±5)Ma，代表大陆碰撞过程中约 150~200 km 深度条件下超高压变质作用形成的；(c) 锆石幔部平均年龄为(397±6)Ma；(d) 最外的年龄为 349~368 Ma，可能为流体改造的结果，可以解释为造山期后热事件的叠加。

形态学和阴极发光图显示纯橄榄岩和榴辉石岩的锆石是变质成因的，其内部结构非常均匀。部分锆石具有与石榴二辉橄榄岩锆石幔部年龄一致的残核。纯橄榄岩锆石的加权平均年龄为(420±5)Ma，与石榴二辉橄榄岩锆石的幔部年龄吻合，并与含柯石英的泥质片麻岩锆石的年龄相当，代表大陆俯冲约 200 km 发生变质的年龄。所有的同位素年代学资料证明绿梁山石榴橄榄岩是一个古岩石圈地幔的残片，而是与板块俯冲过程形成的，并经历了复杂演化历史，包括大陆深俯冲过程和造山作用的折返。

4.3 橄榄岩的成因

石榴橄榄岩是大陆型俯冲碰撞带的标志性岩石类型，从不出现于低氧的大陆型俯冲带中，因此其形成过程与大陆深俯冲有密切的关系。

柴北缘胜利口石榴橄榄岩在宏观上有很好的层状特征，局部可见由矿物（石榴石、橄榄石和辉石）含量变化形成的韵律条带，常量元素地球化学表明，岩石的原岩由辉石-橄榄辉石-二辉橄榄岩-方辉橄榄岩互层或渐变过渡，但稀土元素和微量元素的模式显示这种层状性并不受石榴石的含量变化所控制，反映是原始岩浆结晶条带，而不是变质分异条带[27]。也就是说，石榴石的形成明显晚于这些榴辉岩的侵入时间。大部分岩石具有高场强元素 Nb、Ta、Zr、Hf 和 Ti 亏损，水溶性元素 (Cs, U, Pb 等) 强烈富集的特征，微量元素随 MgO 变化而变化的特征反映了岩浆分熔的过程，说明该石榴橄榄岩是岛弧环境下地幔楔部分熔融的岩浆堆晶的产物。

5 讨论和结论

（1）柴北缘两类橄榄岩的构造意义。柴北缘超高压带中发育有两种不同类型的橄榄岩：（1）橄榄橄榄岩，岩石类型包括石榴二辉橄榄岩、石榴辉橄榄岩、纯橄榄岩和榴辉辉橄榄岩），可与世界其他超高压带超深源的石榴橄榄岩相对比，是大陆型俯冲带中重要的标志性岩石；（2）大陆型橄榄岩。变质的榴辉辉橄榄岩（包括石榴辉橄榄岩、蓝晶石榴辉橄榄岩）和具有大陆玄武岩特征的榴辉辉橄榄岩构成了典型的蛇绿岩剖面，代表大陆岩石圈残片[38]。两种类型橄榄岩的产出，使我们联想到已经持续了很久的关于大陆型超高压变质带中榴辉辉橄榄岩“原地”和“异地”的争论。大量研究表明，大洋-苏超高压变质带是大陆整体俯冲的产物[78]，即榴辉辉岩和大部分石榴橄榄岩的原岩是大陆地壳的成分，一般不存在外来成分的加入（但 Yang 2006[88] 认为苏超高压带带的胡家岭石榴橄榄辉橄榄岩和辉石岩形成于岛弧环境，暗示该岩体可能是原始大陆地壳的成分）。但是，柴北缘超高压变质带中，大陆型地幔橄榄岩、榴辉辉岩及其大岩玄武岩所构成的榴辉辉岩的发现证明，很多榴辉辉岩和橄榄岩是“异地”的，大陆俯冲过程中可以将先期存在的大陆俯冲带的成分卷入其中。因此，柴北缘超高压变质带的岩石学、地球化学和同位素年代学等方面均反映了大洋俯冲到大陆俯冲碰撞的完整过程。

（2）石榴橄榄岩的形成深度。多证据证明柴北缘胜利口石榴橄榄岩的形成深度约 200 km：（1）锆石中金刚石包裹体证明其形成深度大于 150 km；（2）橄榄岩中钾长石＋辉石的出溶片晶，说明在超高压条件下发生替代 (Si + Ti) + Ca (Mg) = 2Al，根据钾长石和辉石出溶的估计，其形成压力约为 7 GPa；（3）石榴岩中发育有钠质角闪石的出溶[26]，说明部分石榴岩在超高压条件下含有过量的 Na 以及超过 1000×10^{-6} 的 OH^{-}；（4）石榴岩-斜方辉石的 Al 压力计和石榴岩-橄榄岩温度计计算获得柴北缘石榴橄榄岩的形成条件为：{p = 5~6.5 GPa, t = 960~1040 °C}。

（3）石榴橄榄岩的构造背景和形成模式。野外产状、岩石学和地球化学等资料说明绿梁山石榴橄榄岩是古俯冲带之上地幔楔部分熔融伪生的高镁橄榄体堆晶的产物，并显示了岛弧岩浆的地球化学特征。根据其同位素年代学，我们进一步提出该石榴橄榄岩三个阶段的演化模式：第一阶段（＞460 Ma），俯冲的洋岩石圈在榴辉辉岩相变质过程中脱水导致地幔楔发生部分熔融并形成岛弧高镁岩浆，在上升过程中，这些熔体在岛弧之下晶石相橄榄岩稳定
的地质深度范围内发生冷却结晶形成堆晶的岩石组合，其结晶时代大约在460 Ma。第二阶段：俯冲的岩石圈板片导致岛弧之下地幔楔软流圈发生楔角流动（corner flow）将这些堆晶橄榄岩携带到地幔的深部。第三阶段：俯冲的大陆地壳捕获该橄榄岩体并在大约423 Ma俯冲到超过200 km的深度，在大约400 Ma与片麻岩等一起折返到中部地壳的位置。

感谢本专辑的两位特邀主编吴福元教授和徐义刚研究员的盛情约稿，同时感谢英国皇家学会国际基金、全国博士学位论文作者专项资金资助项目(200531)的资助。

References:

van Roermund H L M, Carswell D A, Drury M R, et al. Microdiamonds in a megacrystic garnet websterite pod from Bar-

参考文献:

