青藏高原南部地幔包体的发现及其意义

赵志丹1 莫宣学1** 孙晨光 朱弟成1 牛耀龄2 董国臣1 周厥1 董听1 刘勇胜3
ZHAO ZhiDan1, MO XuanXue1**, SUN ChenGang1, ZHU DiCheng1, NIU YaoLing2, DONG GuoChen1, ZHOU Su1, DONG Xin1 and LIU YongSheng3

1. 中国地质大学地质过程与矿产资源国家重点实验室，中国地质大学地球科学与资源学院，北京 100083
2. 杜伦大学地球科学系，杜伦 DH1 3LE，英国
3. 中国地质大学地质过程与矿产资源国家重点实验室，武汉 430074

State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083, China

1. Department of Earth Sciences, Durham University, Durham DH1 3LE, UK
2. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China

2007-12-18 收稿, 2008-01-30 改回。


Abstract The nature of the subcontinental mantle of Tibetan Plateau is not well-known, although lots of postcollisional volcanic rocks in Tibet have been inferred to be generated by low degrees of partial melting from the upper mantle. The key problem is that mantle-derived xenoliths and megacrystals hosted in potassic and ultrapotassic volcanic rocks are rarely found in the hinterland of Tibetan plateau. Here we report our major element data of minerals of the mantle xenoliths hosted in the Saimu volcanic rocks (trachyandesite, with an age of ∼ 17 Ma, have typical ultrapotassic features that similar to that found in southern Tibet). The xenoliths, ranging in size from 0.5 cm to 1.5 cm in diameter, can be divided into two groups. The first group is pyroxenites (Opx + Cpx), and the second is herzolite (Ol + Opx + Cpx ± Ortho ± Sp). The compositions of olivine (Mg² = 89 – 90, CaO = 0.05% ~ 0.12%, TiO₂ < 0.03%, NiO = 0.29% ~ 0.80%), Cpx (Mg² = 88 – 91, Al₂O₃ = 5.5% ~ 7%), Opx (TiO₂ = 0.05% ~ 0.15%, Al₂O₃ = 2~ 5%) and spinel (Mg² = 58 – 76, Cr² = 10 ~ 44, Cr₂O₃ = 9% ~ 35%, MnO = 0.09% ~ 0.24%, FeO = 11% ~ 18%, Al₂O₃ = 29% ~ 57%, MgO = 16% ~ 21%) show similar features to that in the Cenozoic mantle xenoliths in eastern China. The calculated temperatures of the xenoliths are 990 – 1140°C at the given pressures of 16 ~ 20kb. The geotherm suggested by this P-T conditions is similar to that in eastern China, Kenya and other rift-related upper mantle regimes, implying that the regional extension beneath southern Tibet in Miocene, although India were colliding with Asia during that time. Multi-stage metasomatic processes could be found in the samples, including water-bearing phlogopite, quartz in pyroxenites, and the rim-core composition variation in spinel. The secondary spinels along with neighboring phlogopite suggest that a potassic, host-rock like metasomatic agent that enriched in K, Si and H₂O, should have played an important role in modifying the upper mantle beneath southern Tibet. Further study on the Saimu mantle xenoliths will be helpful in revealing the composition, regime, and processes of the upper mantle beneath southern Tibet, and in discussing the origin of the orogenic ultrapotassic rocks.

Key words Mantle xenoliths; Ultrapotassic rocks; Major elements; Saimu; Tibetan Plateau

摘 要 尽管青藏高原碰撞后超钾质岩石代表了上地幔低度部分熔融的产物，增加了对地幔的了解，但是对青藏高原陆下岩石圈地幔的性质依然缺乏清楚认识，其中一个最主要的问题是高原腹地的超钾质岩石中一直缺少幔源包体和巨晶。本文报道了青藏高原南部恰卢普西山岩（具有典型的超钾质岩石特征，年龄约为 17Ma）中产出的地幔包体的矿物微量元素

* 国家重点基础研究发展规划项目（2002CB412603）、国家自然科学基金（40473020, 40503005, 40572048, 40672044）、中国地质局综合研究项目、高等学校学科创新引智计划（B07011）、中科院广州地化所同位素开放实验室基金和教育部留学回国人员科研启动基金资助。
** 通讯作者：莫宣学, E-mail: moxx@cugb.edu.cn

Acta Petrologica Sinica 岩石学报
成分。包体大小为0.5cm～1.5cm, 主要为两类, 一类为辉石岩 (Opx + Cpx), 另一类为角辉橄榄岩 (Ol + Opx + Cpx ± Phl ± Sp)。包体中辉石 (Mg	extsubscript{8} = 89～90, CaO = 0.05%～0.12%, TiO	extsubscript{2} < 0.03%, NiO = 0.29%～0.80%), 单斜辉石 (Mg	extsubscript{8} = 88～91, Al	extsubscript{2}O	extsubscript{3} = 5.5%～7%)。包裹中橄榄石 (TiO	extsubscript{2} = 0.05%～0.15%, Al	extsubscript{2}O	extsubscript{3} = 2%～5%) 和斜方辉石 (Mg	extsubscript{8} = 58～76, Cr	extsubscript{8} = 10～44, Cr	extsubscript{2}O	extsubscript{3} = 9%～35%, MnO = 0.09%～0.24%, FeO = 11%～18%, Al	extsubscript{2}O	extsubscript{3} = 29%～57%, MgO = 16%～21%) 的成分与中印位于新生代玄武岩中的地幔包体特征一致。包体的温度为990～1140°C, 压力为16～20kb, 地层的温度曲线与中印东部、东非肯尼亚等世界典型裂谷区的地幔温度特征一致，表明青藏高原南部在中新世以后处于印度与亚洲大陆的挤压汇聚状态，但仍具有板块构造作用的存在。与这有长寿命的岩浆活动和地幔活动的特征。包裹中含水云母与橄榄石的出现以及地幔包体成分不均一性等揭示了包裹中多期交代作用过程。与金云母共生的尖晶石后期改造作用表明藏南上地幔改造的交代流体应是与寄主火山岩成分接近的富 K, Si 和 H	extsubscript{2}O 的流体。藏南地幔包体的深入研究将对揭示青藏高原地幔的成分、结构及作用过程以及为更好解释超钾质岩石的成因提供更多的证据。

关键词 全幔包体；超钾质岩石；主量元素；赛利普；青藏高原

青藏高原以其面积55万km	extsuperscript{2}, 平均海拔5235m, 占全球平均海拔4000m以上陆地的82%而成为世界上规模最大、海拔最高的造山带（Fielding et al., 1994），是我国研究年轻造山带得天独厚的天然实验室。有关青藏高原岩石圈演化与青藏高原隆升的研究一直得到国内外学者的重视。印度与亚洲大陆碰撞之后发育的岩浆作用是揭示高原岩石圈性质和浅深部隆升过程等构造事件的真实记录（Yin and Harrison，2000; Tappanier et al., 2001; Chung et al., 2005; Mo et al., 2006）。尤其是在近年来不断发现的碰撞后幔源超钾质岩石，对其揭示高原岩石圈幔体的性质提供了一些重要的信息（Turner et al., 1993; 1996; Miller et al., 1999; Williams et al., 2001, 2004; Ding et al., 2003; Nomade et al., 2004; Gao et al., 2007; Guo et al., 2006; 陈健等，2006; 赵志丹等，2006; 孙振光等，2007, 2008）。但是长期以来, 在高原腹地一直没有发现地幔包体, 无法解释限制高原岩石圈幔体的成分、性质和年龄, 这为制约深入探讨大陆碰撞背景下高原大陆岩石圈幔体特征的关键。已知在青藏高原发现的地幔包体主要集中在高原周边地区, 如在青藏高原的云南“三江”和马关地区的富钾岩石（属学嘉等，2006; 魏光照和王海波，2004a, b; 魏光照等，2006; 刘显凡等，1999; 王建等，2002) 和高原东北缘理县地区的钾碱橄榄岩中（属学嘉等，2001; Zhao et al., 2006; 苏本峻等，2007) 都发现了单斜辉石包体; 在青藏高原西南缘的康西瓦玄武岩中发现了单斜辉石包体（罗开华等，2000, 2006)，从青藏高原向北, 在新疆西南天山托克斯盆地的玄武岩中也有地幔包体和单斜辉石（晋建平等，2001; 吴勇军等，2006)。高原北部的羌塘地块曾发现多种下地壳包体（Hacker et al., 2000）。而在西藏雅鲁藏布江地，地幔包体产出的实例较少, 目前已经报道的仅有 1 处, 即丁林等人在南羌塘地区的富钠钙碱性－碱性岩石中发现了含有橄榄石的包体, 并推断其可能源于壳幔过渡带（Ding et al., 2007)。在藏南地区长期存在没有发现地幔包体, 直到中国地调局第二轮的1:25万地质填图中，成都理工大学(2006)

成岩作用与寄主火山岩作用（Ding et al., 2007); 岩浆岩主要分布于盆地及其周边大约 2000km	extsuperscript{2} 范围内, 出露总面积约为 188 km	extsuperscript{2}, 构造上受近东西向的昂拉仁错断裂带和北东向中多断褶带控制。区域地质图工作获得样品中喀K-Ar 和全岩Ar-Ar 同位素年龄为 17.80～15.47Ma(王宝弟等，2008) 获得超钾质岩石中金云母Ar-Ar 坪年为 17.58±0.19Ma; 孙振光等(2008) 选择了超钾质岩石中的锆石, 得到了 LA-ICP-MS 锆石U-Pb 年龄为 17.7±0.3Ma。岩石为粗面
安山岩，高 K₂O, MgO, Cr, Ni 含量和 K₂O/Na₂O 比值和 Mg²⁺，具有强烈富集大离子亲石元素和轻稀土元素，亏损高场强元素 Nb, Ta, Ti 特征，岩石的富集放射性成因 Sr, Pb 和 Nd 同位素，锆石 ε Nd(t) 为 ~7.6 ~ 3.9，都显示了岩石应来源于富集地幔源区（孙晨光等，2007，2008）。

1.2 包体类型

赛利普超基性岩石中的地幔包体大小介于 0.5 cm ~ 1.5 cm。已经识别出的包体岩石类型主要有 2 类，第一类为辉石类，主要矿物为斜方辉石（Opx）和单斜辉石（Cpx），第二类为尖晶石相二辉橄榄岩，主要矿物为橄榄石（Ol）+ Opx + Cpx ± 金云母（Phl）± 普特石（Sp）。此外，该地区还发现了多种地壳包体，例如花岗岩、片麻岩等包体。

1.3 分析方法

主量元素电子探针分析在中国科学院地质与地球物理研究所完成。仪器型号为 JXA-8100；分析的加速电压为 15kV；束流 1 × 10⁻⁵ A；束斑为 1 μm；修正方法为 PRZ；标准样品为美国 SPI 公司 53 种矿物。

2 包体成分和形成温压条件

赛利普地幔包体各类矿物代表性主量元素成分见表 1。

2.1 矿物成分

各样品中橄榄石的成分比较均匀，Mg²⁺ 为 89 ~ 90%（除一个橄榄石的 Mg²⁺ 为 87%），CaO 为 0.05% ~ 0.12%，TiO₂ 均小于 0.03%，NiO 介于 0.29% ~ 0.80%。与寄主的超基性岩石中斑晶橄榄石（Mg²⁺ = 79 ~ 87%）比较，包体的橄榄石具有明显低的 CaO 和高的镁橄榄石（Fo）组分，表明赛利普地幔包体的橄榄石不是岩石熔体中结晶的，而是属于典型的地幔来源橄榄石（图 1）。

尖晶石依据成分特征可以分为 2 类，第一类为高 Al₂O₃（44% ~ 57%），低 TiO₂（0.17% ~ 0.32%），低 Cr₂O₃（9% ~ 21%）尖晶石，同时具有相对低 FeO（11% ~ 16%），高 MgO（18% ~ 21%），高 Mg²⁺（0.67 ~ 0.76），低 Cr³⁺（0.10 ~ 0.24）特征；第二类为低 Al₂O₃（9% ~ 37%），高 TiO₂（0.56 ~ 2.09%），高 Cr₂O₃（26% ~ 46%）尖晶石，同时具有高 FeO（17% ~ 30%），低 MgO（9% ~ 17%），低 Mg²⁺（0.36 ~ 0.63）和高 Cr³⁺（0.32 ~ 0.77）特征。这两种尖晶石可以同时出现在一个单晶矿物颗粒，例如在样品 SL0650 中（图 2a），其主体为灰白色（Sp-1），显示高 Al 低 Cr 特征，而边部亮白色单晶尖晶石（Sp-2）显示高 Al 高 Cr 特征，由于该矿物颗粒显示了较好的尖晶石晶形，可能代表了原有的一个整体单晶尖晶石颗粒分解后形成成分不均一的两部分，或者亮白色 Sp 为流体交代后晶结的部分；若将亮白色尖晶石作为后期流体交代导致，而流体一尖晶石平衡过程中，更多的不相容元素 Cr 留存在尖晶石中，形成高 Cr 尖晶石，类似的反应在其他地区也有（于 宋 和 等，2007；Gregoire et al.，2007；Xu et al.，2008）。图 2b 则显示了样品 SL0650 中 Sp 与 Cpx 矿物之间互呈蠕虫状生长的交生结构，这种结构容易使人想到石榴石相地幔包体过渡到尖晶石相地幔包体过程中石榴石减压分解为 Cpx 和高铝 Sp 的变质熔融过程（徐义刚等，2001），而且与 Cpx 共生的 Pr 不具有高铝特征，而所述的其他具有高铝特征的 Sp 则尚未发现这样的交生结构，因此该样品中 Cpx 和 Sp 不是石榴石分解的产物。

单斜辉石和斜方辉石普遍存在于各样品中。主要为富 CaO（18.1 % ~ 21.4 %）的顽辉石，表示高 TiO₂（0.16% ~ 0.64%）特征，Al₂O₃（1.55% ~ 6.82%）变化较大，MgO 为 14.9 ~ 18.6%，Mg²⁺ 为 0.85 ~ 0.91% 低于橄榄石。如前所述，在样品 SL0650 中 Cpx 和 Sp 显示了蠕虫状生长特征，若假设这 2 种矿物原为一个矿物分解形成的，则按照两种矿物比例估算出的矿物既不是辉石也不是尖晶石，最可能的过程是矿物分解，更可能是后期交代流体介人。斜方辉石成分主要是靠近辉石端元的。Opx 的 Al₂O₃ 变化较大（1.6% ~ 4.9%），Cr₂O₃ 为 0.14% ~ 0.54%，Mg²⁺ 为 0.82 ~ 0.90，具有较低的 TiO₂（0.04% ~ 0.2%），与中国东部尖晶石二辉橄榄岩中 Opx 的成分相类似。在样品 SL0651 中，Cpx 和 Opx 矿物组合中，出现了石英，表明富 Si 流体的加入（图 2c）。

金云母具有较高的 Mg²⁺（0.89 ~ 0.90%），较高的 O₂（2.0% ~ 3.3%）和 Al₂O₃（14.5% ~ 16.7%）；金云母具有比较均匀的 FeO（4.2% ~ 4.6%），MgO（20% ~ 22%）和 K₂O

图 1 地幔橄榄岩包体的 CaO 与 Fo 相图（引自 Thompson & Gibson, 2000）。数据来源：包体 Oi 成分来自本文；寄主超基性岩石据赵志丹未发表数据。Fig. 1 Plots of CaO with Fo in olivine in Sailipu mantle xenoliths and host rock (After Thompson and Gibson, 2000). Oi in Sailipu mantle xenoliths from this work, Oi in the host rocks from Zhao et al.，unpublished data。
（9.2% ~ 9.8%），该富Al 贫Fe 特征与中国东部类似（赵新苗等，2007）。由于电子探针分析获得的总量为92 ~ 96%。金云母中应含有F 和H2O 等挥发组分。将包体与寄主的火山岩中金云母斑晶比较，后者的Mg# (0.73 ~ 0.89)、Al2O3（12% ~ 13%）相对较低，而TiO2（2.3% ~ 3.3%）、K2O（9% ~ 10%）和MgO (20% ~ 22%) 等未显示成分差异。包体内金云母产出多与尖晶石共生，且金云母延伸的位置多与玻璃质成分的交代蚀变物质有关（图2a，d）。若金云母出现是富K 流体加到地幔的直接证据（徐义刚，1998），则金云母一尖晶石一磷灰质的组合表明赛利普火山岩地幔已经受到交代作用的影响，且这种交代作用与寄主岩石成分相似，属于富K、富Ti 和H2O 流体。

将上述的Ol、Cpx、Opx 和Sp 的代表性主量元素成分与中国东部地区典型样品 (Rudnick et al.，2004) 进行对比（图3），赛利普的矿物成分与中国东部新生代玄武岩中的幔包体相似，都是非克拉通区的特征，而与产于典型克拉通地区包体不同，这与青藏高原在印度—亚洲大陆碰撞后的挤压造山—局部伸展的构造背景是吻合的。

2.2 包体形成温压条件

应用矿物二辉石温度计 (Wells，1977)，获得了样品

_SL0646 温度为1082℃，SL0650 为1105℃，SL0651 为985℃～1138℃。将尖晶石相稳定存在的范围（16kb ~ 20kb）做为压力范围，获得赛利普地幔二辉橄榄岩的平衡温压条件（图4）。

Foley et al. (2006) 对南极洲 Jetty 半岛裂谷岩浆作用中的幔包体的矿物样品进行了研究。该地区的地质温压过程，对地幔来源形成了新的制约条件，对比了产于裂谷的裂谷区与典型克拉通区的温压特征，显示裂谷地区具有很高的地温梯度（图4）。图中也显示了东非

表1 赛利普地幔尖晶石二辉橄榄岩矿物主量元素代表性成分（%）

<table>
<thead>
<tr>
<th>样品</th>
<th>矿物</th>
<th>SiO2</th>
<th>TiO2</th>
<th>Al2O3</th>
<th>Cr2O3</th>
<th>FeO</th>
<th>NiO</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na2O</th>
<th>K2O</th>
<th>Total</th>
<th>Mg#</th>
<th>Cr#</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL0646</td>
<td>Ol</td>
<td>41.360.05</td>
<td>0.02</td>
<td>0.02</td>
<td>10.54</td>
<td>0.37</td>
<td>0.15</td>
<td>48.10</td>
<td>0.06</td>
<td>0.03</td>
<td>0.00</td>
<td>100.65</td>
<td>0.89</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opx</td>
<td>55.37</td>
<td>0.09</td>
<td>4.93</td>
<td>0.41</td>
<td>6.64</td>
<td>0.12</td>
<td>0.10</td>
<td>31.95</td>
<td>0.73</td>
<td>0.26</td>
<td>0.01</td>
<td>100.60</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opx</td>
<td>55.75</td>
<td>0.10</td>
<td>4.89</td>
<td>0.39</td>
<td>6.56</td>
<td>0.18</td>
<td>0.14</td>
<td>32.14</td>
<td>0.78</td>
<td>0.14</td>
<td>0.00</td>
<td>101.08</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cpx</td>
<td>52.34</td>
<td>0.59</td>
<td>3.35</td>
<td>1.28</td>
<td>3.27</td>
<td>0.01</td>
<td>0.12</td>
<td>17.26</td>
<td>21.10</td>
<td>0.27</td>
<td>0.00</td>
<td>99.58</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cpx</td>
<td>52.99</td>
<td>0.63</td>
<td>2.74</td>
<td>0.96</td>
<td>3.33</td>
<td>0.03</td>
<td>0.12</td>
<td>17.45</td>
<td>21.38</td>
<td>0.24</td>
<td>0.02</td>
<td>99.88</td>
<td>0.90</td>
<td></td>
</tr>
</tbody>
</table>

注：Mg# = Mg / (Mg + Fe)；Cr# = Cr / (Cr + Al)
图2 赛利普地幔包体矿物结构背散射照片。(a)样品SL0650中Ol+Phl+Sp的矿物组合照片，其中尖晶石具有2种矿物相，灰白色(Sp-1)为高Al低Cr，亮白色(Sp-2)为低Al高Cr。(b)样品SL0650视域中为Ol+Cpx+Sp组合，其中Cpx和Sp具有蠕虫状交生特征。(c)样品SL0651中Opx+Cpx+Q的组合，石英为后期富Si流体交代作用产物。(d)样品SL0650中Ol+Sp+Phl矿物组合和结构，从晶形看，图中Sp的两部分似为被交代流体/熔体分裂为两部分，金云母为交代矿物。

Fig.2 Back-scatter electron (BSE) image of the Sailipu mantle xenolith. (a) In sample SL0650, the minerals Ol + Phl + Sp, in which the Sp showing 2 phases. The grey white (Sp-1) has high Al and low Cr, the bright white part has low Al and high Cr. (b) In samples SL0650 with Ol + Cpx + Sp assemblage, two minerals (Cpx and Sp) showing intergrowth texture. (c) In sample SL0651 with Opx + Cpx + Q. (d) In sample SL0650 with Ol + Sp + Phl, the Sp should have be one crystal and cut by metasomatic melt.

图3 赛利普地幔包体主要矿物成分特征。赛利普为本文结果，汉诺坝和栖霞引自Rudnick et al. (2004)

Fig.3 Major element composition of the Sailipu mantle xenolith. Sailipu from this work, Hannuoba and Qixia from Rudnick et al. (2004)

裂谷发展中的2期地温变化以及西伯利亚东部贝加尔裂谷地区的地温特征。中国东部地区大量研究成果(Xu et al., 1998; Xu et al., 1999; Huang et al., 2004)也建立了地温梯度曲线(图4)，认为中国东部是类似于澳大利亚东南部的高地热流、高地温梯度地区，中国东部整体具有拉张性质的岩石圈地幔。

赛利普尖晶石相地幔二辉橄榄岩包体平衡温度为985℃~1138℃，反映一个接近于大洋地温梯度的高热流地区的特征，同时兼具裂谷型地幔性质，若结合寄主的赛利普超钾质岩石在青藏高原南部的产出与南北向伸展构造密切相关的事实(赵志丹等，2006)，则包体温压条件反映的地幔伸展减压属性与印度与亚洲大陆碰撞后超钾质岩石产出的区域构造背景是极其吻合的。另外，青藏高原南部拉萨地块具有异常高热流特征(Shen, 1996)也与本文地幔地温梯度一致。
在全世界范围内的克拉通地区、类克拉通地区、造山带、裂谷和具有伸展构造背景的地区(东非)、地幔包体的岩石类型、结构构造、全岩和矿物成分具有不同的特征，反映了与构造背景相吻合的深部岩石圈特征(Pearson et al., 2004)。对于青藏高原这一年轻的造山带，作为碰撞后挤压造山、陆内俯冲为主的构造体制之下的局部伸展构造环境(超钾质岩石与南北向伸展构造有关)，其地幔性质和状态如何呢？对赛利普地幔包体的深入研究将具有重要的意义，一是有利于揭示青藏高原南部岩石圈地幔的化学成分和状态与地幔动力学过程；二是将为青藏高原超钾质岩石的幔源成分提供更有力证据；三是将青藏高原造山带的陆壳地幔与中欧东部地区以及国内外类似地区进行系统对比研究，进一步揭示高原地幔的特征，为高原隆升和演化提供深部作用过程的约束。

3 地幔包体揭示了青藏高原南部岩石圈地幔性质与地幔交代作用

上述包体形成的温压条件所揭示的包体来源深度和青藏高原南部岩石圈地幔的温压梯度表明，青藏高原这一活动造山带的地幔具有与我国东部、东非裂谷、贝加尔裂谷等世界典型的裂谷地区相似的特征。该结果进一步支持了地表显示的南北向伸展构造是具有深源特征的，表明区域性的伸展在垂直上可以延伸到岩石圈地幔。


上述对赛利普地幔包体中发现了多种交代作用的信息，显示了青藏高原南部岩浆岩的全岩化学成分和矿物成分具有不同的特征，例如出现石英(Si交代)、金云母(流体和K交代)等，这些值得进一步研究。含水矿物金云母的存在是地幔经过流体交代而含水的直接证据，不同时期流体对地幔产生不同的交代作用，可以通过对赛利普地幔包体的深入研究揭示地幔的结构构造，例如出现软流圈—岩石圈相互作用过程。含水矿物例如金云母、角闪石等的存在也作为地幔遭受流体交代作用的直接证据(徐义刚，1998)。此外还有其他各种交代作用，例如富硅流体交代(陈立辉和周新华，2001)等。

3.2 地幔包体揭示了青藏高原南部岩石圈地幔性质与地幔交代作用

图4 赛利普地幔包体形成温压条件与世界典型裂谷区地幔包体对比。中国东部资料引自Xu et al. (1998)、Xu et al. (1999)和Huang et al. (2004)；其余引自Foley et al. (2006)。Fig.4 Thermobarometry of Saili pu therozite compared to other regions in typical rift settings. Saili pu samples from this work, eastern China from Xu et al. (1998), Xu et al. (1999) and Huang et al. (2004); others from Foley et al. (2006)。
4 结论

（1）青藏高原西南部赛利普拉地区发现的地幔包体主要为二辉橄榄岩，属于典型的尖晶石橄榄岩。主要矿物成分与中国东部地幔包体相似，显示了非克拉通地区地幔包体的特征。对包体矿物组合与结构的研究揭示了包体中具有多期尖晶石，出现石英，交代的含水矿物云母等特征，交代的流体具有类似于寄主岩石的富 Si、富 K 特征。

（2）包体形成温度为 985°C ～ 1138°C，压力为 16kb～20kb，显示的青藏高原南部地幔温度与中国大陆及东非、贝加尔等世界典型裂谷区相当，表明青藏高原的上地幔具有裂谷型高温地幔特征，与寄主的超钾质岩石产出与高原南北向展布构造密切相关。青藏高原南部具有很高的地表热流等特征是吻合的。

（3）初步的研究显示，赛利普地幔包体对于揭示青藏高原南部岩石圈地幔的化学成分和状态与地幔动力学过程。寄主的超钾质岩石的幔源成因具有重要意义。丰富的矿物组合与结构将为深入了解地幔交代作用提供重要证据。

References

Foley S and Peccherillo A. 1992. Potassic and ultrapotassic magmas and...
their origin. Lithos, 28(3-6): 181–185
Wei QR and Wang JH. 2004a. Study on petrology and mineralogy of mafic deep-derived enclaves in Liube-Xiangduo area, eastern Tibet.
附中文参考文献

陈建林，许继峰，康志强，王宝弟。2006。青藏高原西部构造区中新生代布嘎寺组钾质火山岩成因。岩石学报，22（3）：585－594

陈立辉，周新华。2001。地幔富硅交代与大陆岩石圈的演化。地学前沿，8（3）：141－146

刘显凡，战新志，高振敏，刘家军，李朝阳，苏文超。1999。云南六合深源包体与富碱斑岩成岩成矿的关系，中国科学（D），29（5）：413－420

吕勇军，罗照华，任忠宝，梁涛，柯珊。2006。西南天山托运盆地新生代玄武岩中巨晶的研究。中国科学（D），36（2）：154－166

罗照华，莫宜学，万渝生，李莉，魏阳。2006。青藏高原最年轻碱性玄武岩SHRIMP年龄的地质意义。岩石学报，22（3）：578－584

罗照华，张文会，邓晋平，郑建平，苏康国。2000。西昆仑地区新生代火山岩中的深源包体。地学前沿，7（1）：295－298

史兰斌，林传勇，陈李德。2003。由甘肃宕昌好坝斑岩体推导上地幔物质组成，热结构和流变学特征。地震地质，25（4）：525－542

苏本勤，张宏福，王巧云，孙赫，肖瑶，英基丰。2007。中国东部及西秦岭地区新生代岩浆岩地幔中的相转变带及其温压条件。岩石学报，23（6）：1313－1320

孙晨光，赵志丹，莫宜学，朱弟成，董国臣，周卓，董昕，谢国刚。2007。青藏高原拉萨地块西部中新世赛普利钾质岩石的地球化学与岩石成因。岩石学报，23（11）：2715－2726

孙晨光，赵志丹，莫宜学，朱弟成，董国臣，周卓，陈海红，谢剑文，杨暘衡，孙金凤。2008。青藏高原西部赛普利钾质火山岩富集地幔源和岩石成因：锆石U－Pb年代学和Hf同位素制约。岩石学报，24（2）：249－264

王保弟，许继峰，张兴国，陈建林，康志强，董彦辉。2008。青藏高原西部赛普利中新世火山岩区：地球化学及Sr-Nd同位素制约。岩石学报，24（2）：265－278

王建，李建平，王江海，马志红。2002。滇西剑川——大理地区新生代钾玄岩系中深源包体的地质意义。矿物学报，22（2）：113－125

魏启荣，李德威，郑建平，王江海。2006。青藏东缘马关火山岩的基本地质学与矿物学研究。矿物岩石，26（1）：20－28

魏启荣，王江海。2004a。青藏东缘六合——香格里拉深源包体的岩石学和矿物学研究。矿物岩石，24（1）：17－28

魏启荣，王江海。2004b。云南马关尖晶石相二辉橄榄岩体的平衡温度条件及其指示意义。矿物学报，24（3）：278－284

徐义刚，颜文，孙敏，刘丽，何在成，史兰斌。2001。大陆地幔变质熔融机制：广东麒麟岩体包体提供的证据。科学通报，46（11）：943－947
喻学惠, 莫宣学, 曾普胜, 朱德勤, 肖小牛. 2006. 云南马关地区新生代玄岩中地幔包体研究. 岩石学报, 22(3): 621 – 630
赵新苗, 张宏福, 朱祥坤, 张文慧, 杨岳衡, 汤艳杰. 2007. 华北中、新生代岩石圈地幔的交代作用: 含金云母地幔岩提供的证据. 岩石学报, 23(6): 1281 – 1293