The origin and geodynamic significance of the Mesozoic dykes in eastern continental China

Juanjuan Kong, Yaoling Niu, Pu Sun, Yuanyuan Xiao, Pengyu Guo, Di Hong, Yu Zhang, Fengli Shao, Xiaohong Wang, Meng Duan

Abstract

We sampled 22 Mesozoic dykes in eastern continental China and carried out a detailed study on these samples, including K–Ar and zircon U–Pb geochronology, and elemental and Sr-Nd-Pb-Hf isotope geochemistry. Their K–Ar and zircon ages of 130–110 Ma are broadly consistent with the timing of the lithosphere thinning and the emplacement ages of widespread granitoids in the vast region, explicitly pointing to a common cause in space and time. The dykes represent evolved alkali basaltic melts intruding the Mesozoic granitoids. Their rare earth element (REE) and multi-element patterns differ from the present-day ocean island basalts (OIB), but show strong arc-like signatures (e.g., enrichment in Rb and Pb and depletion in Nb, Ta and Ti). They show high (δ7Sr/δ6Sr) (0.7048 to 0.7103), low εNd(t) (−12.3 to −5.7), low εHf(t) (−16.5 to −8.0) and low (206Pb/238U) (18.79–18.85). These Mesozoic dykes are best understood as resulting from melting of geochemically enriched subcontinental lithospheric mantle (SCLM), whose geochemical enrichment is consistent with prior metasomatism with the agent being hydrous melt coming from subduction of the Paleo-Pacific plate at ~120 Ma or earlier. Similar to the present-day situation, the paleo-Pacific slab may have also existed stagnant in the mantle transition zone in the Mesozoic. The slab dehydrated and released water in the form of hydrous melt that percolated through and metasomatized the mantle lithosphere, and weakened the base of the lithosphere while producing basaltic melts that evolved to intermediate-felsic compositions of these dykes. The basaltic magmas that underplated and melted the lower crust to generate the widespread Mesozoic granitoids in eastern continental China.

1. Introduction

The Paleozoic diamondiferous kimberlite volcanism in eastern continental China indicates the existence of a long-lived craton such as the North China Craton (NCC) with the lithosphere thickness in excess of 200 km. However, the present-day lithosphere thickness of 60–80 km below the vast region and the widespread magmatic activities in the Mesozoic and since then point to the lithospheric destructions since the Mesozoic (e.g., Wong, 1929; Menzies et al., 1993; Griffin et al., 1998; Zheng et al., 1998; Gao et al., 2002; Zhou et al., 2002; Wu et al., 2003; Yang et al., 2003; Zhang et al., 2004; Zhu et al., 2012; Niu, 2014). However, the exact mechanisms of the lithospheric destruction remain speculative. Principal mechanisms proposed include delamination (e.g., Deng et al., 2007; Gao et al., 2004; Li et al., 2012; Lin and Wang, 2006; Liu et al., 2008a, 2008b; Windley et al., 2010; Wu et al., 2005; Xu et al., 2008; Xu et al., 2013), thermo-chemical erosion (e.g., Fan and Menzies, 1992; Griffin et al., 1998; Menzies et al., 1993; Xu et al., 2004; Xu et al., 2009; Zheng et al., 1998; Zheng et al., 2006, 2007), basal hydration-weakening (Niu, 2005, 2014; Niu et al., 2015) and flat subduction (Wu et al., 2017). Different opinions may still exist, but the effect of paleo Pacific plate subduction is now widely accepted. For example, the lithosphere thinning accompanied by the widespread volcanism during the Mesozoic is interpreted to be genetically related to dehydration of such a subducted slab in the mantle transition zone (Guo et al., 2014; Niu, 2005, 2014; Niu et al., 2015; Xu, 2014; Xu et al., 2012; Zhu et al., 2012). Multiple lines of evidence suggest that subduction of the paleo Pacific plate strongly influenced geological processes in eastern continental China since the Mesozoic (Guo et al., 2014; Niu, 2005, 2015; Niu et al., 2015; Wang et al., 2015; Wu et al., 2005; Zhou and...
2. Geology and samples

The eastern continental China includes the Northeast (NE) China, North China Craton (NCC), the Dabie Orogen, and the South China Cratons (SCC) (Fig. 1). NE China is located in the eastern segment of the Central Asian Orogenic Belt and is generally considered to be a tectonic collage of several microcontinental blocks (e.g., Niu, 2005; Xu, 2014), and study of these rocks can help explore the timing and mechanism of lithospheric thinning. The Mesozoic mafic dykes are widespread in eastern continental China, and mainly striking NW-SE and intruding Mesozoic granitoids and old basement rocks (Dai et al., 2016; Liang et al., 2016). The concept of basal hydration weakening that thinned the mantle lithosphere in eastern continental China (Niu, 2005, 2014) assumed that the Cretaceous mafic magmatic rocks, including the dykes we study here, resulted from melting the thinned mantle lithosphere. One of our current research objectives in the region is to test the validity of this assumption. In this paper, we present our testing result through studying the major element, trace element and Sr–Nd–Pb–Hf isotope compositions of representative Cretaceous dykes from eastern continental China.

3. Analytical methods

3.1. K–Ar

Fresh basaltic samples were selected for dating. They were crushed into ~1 mm grains and washed in distilled water. Conventional whole-rock K–Ar dating was carried out at Key Laboratory of Orogenic Belts and Crustal Evolution at Peking University for five samples. We analyzed Ar isotopes in a VSS-RGA-10 mass spectrometer (1986). The data were corrected for mass discrimination, nucleogenic interferences, and atmospheric contamination following the procedures in K–Ar Data Processing 1.0. A K–Ar age value of ZBH-25 (biotite of granodiorite in Fangshan) is 132.47 Ma (Recommended value is 132.9 ± 1.3 Ma) for atmospheric argon, which is used for the calculation of the mass spectrometer discrimination (Sang et al., 2006).

3.2. Zircon U–Pb

Zircons from five samples were separated for U–Pb dating using methods of heavy magnetic techniques. Cathodoluminescence (CL) imaging was carried out using a CL spectrometer (Gatan Mini CL) equipped on a JEOI 6510 scanning electron microscope (SEM) at the Beijing GeoaAnalysis Co., Ltd. U–Pb dating was conducted using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao. Zircons were ablated with a 193 nm excimer laser system produced by Photon-Machines company. Using a 25 μm spot size, frequency of 4 Hz and intensity of 100% (Xiao et al., under review). Zircon 91,500 was used as external standard. Off-line selection and integration of background and analyte signals, and time-drift correction and quantitative calibration for trace element analyses and U–Pb dating were performed by ICP-MS-Data-Cal (Li et al., 2010a; Liu et al., 2010b). Concordia diagrams and weighted mean age calculations were processed using Isoplot/Ex-version 4.15 (Ludwig, 2012).

3.3. Major and trace elements

We chose freshest samples for geochemical analysis. After the weathered surfaces, pen marks and saw marks were removed, the sample chips were thoroughly cleaned ultrasonically with Milli-Q water, dried and then powdered using an agate mill in a clean environment. Whole-rock major and trace elements were analyzed at IOCAS, using an Agilent-5100 inductively coupled plasma-optical emission spectrometer (ICP-OES) and Agilent-7900 inductively coupled plasma-optical emission spectrometer (ICP-OES).
mass spectrometer (ICP-MS), respectively. For major elements, ~50 mg sample powder was placed in a platinum crucible and melted at 1050 °C for 1 h in a muffle furnace. Then, the crucible was further heated over a Bunsen burner (Dragon series) at 1000 °C to ensure all sample materials forming a single coherent melt drop that was finally poured/quenched into ~50 mL 5% HNO3 solution at room temperature. The solution was then diluted into 100 mL with Milli-Q water in clean plastic bottle for analysis. The analytical details are given in Appendix B. The ICP-OES analytical precision is better than 5% (RSD, relative standard deviation; see Appendix C for details). The values of USGS reference materials BCR-2, STM-2 and W-2 run with our samples are given in Appendix D, which are consistent with the reported reference values. For loss on ignition (LOI) analysis, ~500 mg samples were weighed and heated in a muffle furnace at 950 °C for 2 h, cooled in a desiccator, and then weighed again to calculate the weight loss as the LOI.

For trace element analysis, fifty milligram powder of each sample was dissolved with acid mix (1:1) of distilled HF and HNO3 in a high pressure jacket equipped Teflon beaker till complete digestion/dissolution. Analytical precision is better than 5% for most elements. During trace element analysis, USGS reference materials AGV-2 and BCR-2 were used to monitor the analytical accuracy and precision. The values of AGV-2 and BCR-2 run with our samples are given in Appendix E, which are consistent with the reported reference values. Sample digestion and analytical details are given in Chen et al. (2017).

3.4. Sr-Nd-Pb-Hf isotopes

Whole-rock Sr-Nd-Pb-Hf isotopic analyses were done in the Radioisotope Facility at the University of Queensland, Australia. The rock powders were dissolved in a mixture of double-distilled concentrate HNO3 and HF, and dried on a hot plate at 80 °C. After converting any fluoride to nitrate, the dried residue was dissolved with 3 mL 2 N HNO3. 1.5 mL sample solution was loaded onto a stack of Sr-spec, Thru-spec and LN-spec resin columns to separate Sr, Pb, Nd and Hf, using a streamlined procedure modified after Miková and Denková (2007) and Yang et al. (2010). The measurement of 87Sr/86Sr, 144Nd/142Nd and 176Hf/177Hf ratios was conducted in static mode on a Nu Plasma HR MC-ICP-MS using a modified CETAC ASX-110FR autosampler and a DSN-100 dissolution nebulizing system. All measured 87Sr/86Sr, 144Nd/142Nd and 176Hf/177Hf ratios were normalized to 86Sr/88Sr = 0.1194, 146Nd/144Nd = 0.7219 and 179Hf/177Hf = 0.7325, respectively. Analyses of NBS987 standard run during the same period gave 87Sr/86Sr = 0.710249 ± 17 (n = 18, 2σ). In the course of 143Nd/144Nd and 176Hf/177Hf analysis, the in-house Nd standard, Ames Nd Metal and 10 ppm Hf ICP solution from Choice Analytical were used as instrument drift monitors, respectively. Analyses of in-house Nd standard gave 143Nd/144Nd = 0.511966 ± 12 (n = 24, 2σ), corresponding to a mean value of 0.282160 ± 6 (n = 16, 2σ) for JNd-1 standard. Analyses of in-house Hf standard yielded a mean 176Hf/177Hf of 0.282146 ± 12 (n = 31, 2σ). The values of USGS reference materials JG-3 and BCR-2 run with our samples are given in Appendix F, which are consistent with the reported reference values. Analytical details are given in Guo et al. (2014).

4. Results

4.1. K–Ar dating

Our K–Ar dating on representative samples (Appendix G) give emplacement ages of 132.5-120.0 Ma for these dykes.
4.2. Zircon U–Pb ages

Representative CL images of analyzed zircons and corresponding concordia diagrams are shown in Fig. 4. The age data are given in Appendix H.

Zircons from dyke samples are pale green, euhedral columnar crystals (80–150 μm long) with aspect ratios of ~1.5:1–2:1 (Fig. 4). The LA-ICP-MS U–Pb analysis gave variable Th (242–2508 ppm) and U (658–7565 ppm) concentrations with Th/U ratios of 0.25–0.67 (Appendix H), which are consistent with a magmatic origin (Belousova et al., 2002; Hoskin and Schaltegger, 2003). Thus, the youngest U–Pb age group of the zircons represents the crystallization age. The measured 206Pb/238U ages for the five dyke samples are identical, yielding a weighted mean age of 128.0 ± 3.1 Ma (1σ, MSWD = 1.9, n = 6) for sample LN14-32, 120 ± 15 Ma (1σ, MSWD = 19, n = 4) for sample SD14-30, 115.9 ± 2.4 Ma (1σ, MSWD = 2.2, n = 9) for sample SD14-33, 109.1 ± 1.4 Ma (1σ, MSWD = 1.5, n = 10) for DBZ15-47, respectively (Fig. 4). The high MSWD up to 19 while calculating the weighted mean age of sample SD14-30 was resulted from the facts that the zircon grains are few in quantity and very small in size, the core of the zircon was hit during analysis (Fig. 4b). These ages are taken to represent the intrusive age of the dykes. And the ages of other samples are list in Appendix A.

4.3. Major elements

Whole-rock major and trace elements are given in Table 1. The dykes from the eastern China plot in the fields of basaltic trachyandesite and trachybasalt on the total alkali-silica (TAS) diagram (Fig. 5). The dykes represent variably evolved melts characterized by moderate silica (45.76–63.04 wt%), high Al2O3 (13.00–17.50 wt%) and low Mg# (0.47–0.54) (Mg# = molar Mg/[Mg + Fe2+]). In MgO variation diagrams, the data define scattered yet linear and more or less continuous trends (SiO2, Al2O3, CaO, CaO/Al2O3, Cr and Ni, Fig. 6). There are random correlations of MgO vs. TiO2, Fe2O3 and P2O5.
Fig. 4. Concordia diagrams of dated zircons from sample (a) LN14-32 (diabase), (b) SD14-30 (gabbro), (c) SD14-33 (gabbro), (d) SD14-38 (gabbro) and (e) DBZ15-47 (diorite) of the Cretaceous dykes. The weighted mean 206Pb/238U age corresponds to the red circle analyses. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
Table 1

<table>
<thead>
<tr>
<th>Major element (wt%)</th>
<th>SiO(_2)</th>
<th>TiO(_2)</th>
<th>Al(_2)O(_3)</th>
<th>TFe(_2)O(_3)</th>
<th>CaO</th>
<th>MnO</th>
<th>MgO</th>
<th>Na(_2)O</th>
<th>K(_2)O</th>
<th>P(_2)O(_5)</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBZ15-44</td>
<td>54.31</td>
<td>0.78</td>
<td>4.03</td>
<td>9.35</td>
<td>7.89</td>
<td>0.15</td>
<td>7.63</td>
<td>3.18</td>
<td>2.23</td>
<td>0.35</td>
<td>0.64</td>
</tr>
<tr>
<td>DBZ15-45</td>
<td>55.01</td>
<td>0.86</td>
<td>4.03</td>
<td>9.20</td>
<td>7.63</td>
<td>0.19</td>
<td>7.57</td>
<td>3.38</td>
<td>2.47</td>
<td>0.36</td>
<td>0.47</td>
</tr>
<tr>
<td>DBZ15-46</td>
<td>53.52</td>
<td>0.90</td>
<td>4.03</td>
<td>9.11</td>
<td>7.48</td>
<td>0.11</td>
<td>7.51</td>
<td>3.35</td>
<td>2.77</td>
<td>0.32</td>
<td>0.48</td>
</tr>
<tr>
<td>DBZ15-47</td>
<td>51.73</td>
<td>0.91</td>
<td>4.03</td>
<td>9.07</td>
<td>7.33</td>
<td>0.18</td>
<td>7.47</td>
<td>3.42</td>
<td>3.10</td>
<td>0.25</td>
<td>0.49</td>
</tr>
<tr>
<td>LN14-32</td>
<td>54.82</td>
<td>0.76</td>
<td>4.03</td>
<td>9.04</td>
<td>7.21</td>
<td>0.17</td>
<td>7.41</td>
<td>3.47</td>
<td>2.77</td>
<td>0.33</td>
<td>0.47</td>
</tr>
<tr>
<td>LN14-45</td>
<td>55.46</td>
<td>0.85</td>
<td>4.03</td>
<td>9.00</td>
<td>7.13</td>
<td>0.15</td>
<td>7.39</td>
<td>3.55</td>
<td>3.14</td>
<td>0.26</td>
<td>0.49</td>
</tr>
<tr>
<td>SD14-16</td>
<td>53.65</td>
<td>0.82</td>
<td>4.03</td>
<td>8.93</td>
<td>7.02</td>
<td>0.14</td>
<td>7.35</td>
<td>3.60</td>
<td>2.77</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>SD14-30</td>
<td>51.54</td>
<td>0.90</td>
<td>4.03</td>
<td>8.79</td>
<td>6.91</td>
<td>0.15</td>
<td>7.31</td>
<td>3.68</td>
<td>3.12</td>
<td>0.28</td>
<td>0.51</td>
</tr>
<tr>
<td>SD14-32</td>
<td>55.29</td>
<td>0.90</td>
<td>4.03</td>
<td>8.76</td>
<td>6.83</td>
<td>0.13</td>
<td>7.30</td>
<td>3.73</td>
<td>3.11</td>
<td>0.31</td>
<td>0.51</td>
</tr>
<tr>
<td>SD14-36</td>
<td>55.65</td>
<td>0.90</td>
<td>4.03</td>
<td>8.74</td>
<td>6.76</td>
<td>0.13</td>
<td>7.29</td>
<td>3.76</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>SD14-37</td>
<td>55.89</td>
<td>0.90</td>
<td>4.03</td>
<td>8.72</td>
<td>6.70</td>
<td>0.13</td>
<td>7.27</td>
<td>3.79</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>SD14-38</td>
<td>55.46</td>
<td>0.90</td>
<td>4.03</td>
<td>8.69</td>
<td>6.63</td>
<td>0.13</td>
<td>7.25</td>
<td>3.81</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>SD14-43</td>
<td>55.12</td>
<td>0.90</td>
<td>4.03</td>
<td>8.66</td>
<td>6.57</td>
<td>0.13</td>
<td>7.24</td>
<td>3.83</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>SD14-64</td>
<td>55.46</td>
<td>0.90</td>
<td>4.03</td>
<td>8.65</td>
<td>6.50</td>
<td>0.13</td>
<td>7.22</td>
<td>3.85</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>SD14-71</td>
<td>55.02</td>
<td>0.90</td>
<td>4.03</td>
<td>8.60</td>
<td>6.43</td>
<td>0.13</td>
<td>7.21</td>
<td>3.87</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>XJZZ11-04</td>
<td>55.25</td>
<td>0.90</td>
<td>4.03</td>
<td>8.56</td>
<td>6.37</td>
<td>0.13</td>
<td>7.20</td>
<td>3.89</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>XJZZ11-06</td>
<td>55.29</td>
<td>0.90</td>
<td>4.03</td>
<td>8.53</td>
<td>6.31</td>
<td>0.13</td>
<td>7.19</td>
<td>3.91</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>YS14-27</td>
<td>53.52</td>
<td>0.90</td>
<td>4.03</td>
<td>8.40</td>
<td>6.24</td>
<td>0.13</td>
<td>7.18</td>
<td>3.93</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>YS14-31</td>
<td>55.01</td>
<td>0.90</td>
<td>4.03</td>
<td>8.34</td>
<td>6.18</td>
<td>0.13</td>
<td>7.17</td>
<td>3.95</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>YS14-32</td>
<td>55.02</td>
<td>0.90</td>
<td>4.03</td>
<td>8.33</td>
<td>6.16</td>
<td>0.13</td>
<td>7.16</td>
<td>3.97</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>YS14-33</td>
<td>55.02</td>
<td>0.90</td>
<td>4.03</td>
<td>8.30</td>
<td>6.14</td>
<td>0.13</td>
<td>7.15</td>
<td>3.99</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>YS14-34</td>
<td>55.02</td>
<td>0.90</td>
<td>4.03</td>
<td>8.28</td>
<td>6.12</td>
<td>0.13</td>
<td>7.13</td>
<td>4.01</td>
<td>3.12</td>
<td>0.30</td>
<td>0.51</td>
</tr>
<tr>
<td>DBZ14-46REP</td>
<td>54.01</td>
<td>0.78</td>
<td>4.03</td>
<td>9.35</td>
<td>7.89</td>
<td>0.15</td>
<td>7.63</td>
<td>3.18</td>
<td>2.23</td>
<td>0.36</td>
<td>0.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trace element (ppm)</th>
<th>Sc</th>
<th>V</th>
<th>Cr</th>
<th>Ni</th>
<th>Na</th>
<th>Mg</th>
<th>Sr</th>
<th>Y</th>
<th>Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>REP</td>
<td>26.6</td>
<td>0.35</td>
<td>380</td>
<td>114</td>
<td>409</td>
<td>4.03</td>
<td>704</td>
<td>889</td>
<td>4.09</td>
</tr>
<tr>
<td>SD14-16REP</td>
<td>24.7</td>
<td>0.36</td>
<td>104</td>
<td>120</td>
<td>5.23</td>
<td>5.66</td>
<td>785</td>
<td>176</td>
<td>5.66</td>
</tr>
</tbody>
</table>
4.4. Trace elements

The dykes show enrichment in light rare earth elements (LREEs) \((\text{La/Yb})_N = 7.69 \text{ to } 46.85\) and large ion lithophile elements (LILEs, such as Ba, Sr, Pb and K) without Eu anomalies (Fig. 7). These dykes show arc-like signature with negative HFSEs (such as Nb, Ta and Ti) anomalies (Fig. 7b), which are distinguished from average MORB and OIB (Sun and McDonough, 1989). These dykes have higher \([\text{La/Sm}]_N\) (2.3–5.1, primitive mantle normalized \(\text{La/Sm}\)) than average OIB (~2.4; Sun and McDonough, 1989), reflecting a highly enriched mantle source (Niu and Batiza, 1997). They show relatively large variations in \(\text{Nb/U}\) (1.41–36.22), \(\text{Ce/Pb}\) (4.16–20.18), \(\text{Th/U}\) (0.46–5.00, the low \(\text{Th/U}\) of 0.46 may due to being weathered) and \(\text{Zr/Hf}\) (38.95–44.82). These variations were found previously in intraplate basaltic rocks (Dupuy et al., 1992).

4.5. Whole rock Sr-Nd-Pb-Hf isotopes

The isotopic data are given in Appendix I. The initial isotopic ratios are calculated using zircon U–Pb ages of representative sample of this study (see above). The dykes have present-day \(^{87}\text{Sr}/^{86}\text{Sr}\) of 0.7050 to 0.7110 (initial \(^{87}\text{Sr}/^{86}\text{Sr} \left[\text{ISr}\right] = 0.7048 \text{ to } 0.7103\) (Fig. 8a). They display...
variably enriched Nd and Hf isotopic compositions ($\varepsilon_{Nd}(t = 120 \text{ Ma}) = -12.3 \text{ to } -5.7$, $\varepsilon_{Hf}(t = 120 \text{ Ma}) = -16.5 \text{ to } -8.0$) (Fig. 8b). The initial $^{206}\text{Pb}/^{204}\text{Pb}$, $^{207}\text{Pb}/^{204}\text{Pb}$ and $^{208}\text{Pb}/^{204}\text{Pb}$ ratios of the dykes are 18.79–18.85, 15.64–15.65 and 38.78–38.84, respectively (see below, Fig. 9). In the $^{208}\text{Pb}/^{204}\text{Pb}$ vs. $^{206}\text{Pb}/^{204}\text{Pb}$ plot (Fig. 9a), the scattered linear array is significantly displaced above the Northern Hemisphere Reference Line (NHRL), showing the Dupal signature (Hart, 1984). In the $^{207}\text{Pb}/^{204}\text{Pb}$ vs. $^{206}\text{Pb}/^{204}\text{Pb}$ diagram (Fig. 9b), the scattered data array plot displays an array above the NHRL. The Pb isotopic compositions are comparable to those of the Mesozoic mafic rocks from the North China Craton (Xie et al., 2006; Zhang et al., 2004) although more scattered with some samples plotting beyond the array (Figs. 8, 9), most likely resulting from mantle source heterogeneity on varying local scales because these samples are from a geographically large area (see in Fig. 1). The contemporaneous Mesozoic granitoids (gray dots in Fig. 9) in eastern continental China have similar Pb isotopic compositions to our dykes (Fig. 9).
5. Discussion

5.1. Crust contamination vs. source enrichment

On MgO variation diagrams (Fig. 6), all samples form a scattered negative trend in SiO_2-MgO plot and scattered positive trends in CaO/Al_2O_3-MgO, Cr-MgO and Ni-MgO plots, which are consistent, to a first-order, with varying extent of fractional crystallization dominated by olivine and clinopyroxene as the major liquidus phases. The lack of correlations of MgO vs. Fe_2O_3 and MgO vs. TiO_2 disapprove fractionation of Fe-Ti oxides.

Crustal contamination or magma mixing as possible processes may affect the compositions of erupted basaltic melts (e.g., the mafic dykes we study here) and need to be evaluated before discussing mantle sources and processes. To evaluate these processes is not straightforward here because the dykes we studied have “crust-like” or “arc-like” geochemical features, e.g., negative Nb-Ta-Ti and positive Pb anomalies, high initial ^{87}Sr/^{86}Sr and low ε_{Nd}(t) and ε_{Hf}(t) values. Nevertheless, we show below that these dykes may have experienced limited crustal contamination.

The continental crust is characterized by elevated abundances of SiO_2 of 61.8 wt% (on average) and large ion lithophile elements (LILEs), yet relatively depleted high field strength elements (HFSEs) (Rudnick and Gao, 2003) with high ^{87}Sr/^{86}Sr, low ^{143}Nd/^{144}Nd and low ^{176}Hf/^{177}Hf. Also, given the relative incompatibility of D_{Nb} ≈ D_{Th} ≈ D_{Ta} during basaltic magmatism (Niu and Batiza, 1997; Niu and O’Hara, 2009), the dykes show Ta* and Nb* closely resemble those of the BCC and IAB, but significantly differ from the MORB and OIB, suggesting the effect of possible crustal contamination (Fig. 10). However, the poor correlations between SiO_2 (except the two samples of SiO_2 > 60 wt%) and ε_{Nd}(t), ε_{Hf}(t) and (206Pb/204Pb)_i (Fig. 11) indicate that crustal contamination, if any, is insignificant. Thus, the apparently contradictory implications (Figs. 10 and 11) requires an open-minded consideration. Additionally, the mafic dykes display high concentrations of Sr (501–1569 ppm) and Ba (507–2326 ppm) that are much higher than the crustal values of the BCC (Sr = 320 ppm; Ba = 456 ppm; Rudnick and Gao, 2003). LN-dykes in Liaoning, YS-dykes in Yanshan, SD-dykes in Shandong.

Fig. 10. Diagram of Ta* vs. Nb* for the dykes (after Niu and Batiza, 1997). Compared with common basalts, the dikes have Ta and Nb deficiencies, resembling continental crust and IAB. Data of primitive mantle and average oceanic basalts (OIB, N-MORB) are from Sun and McDonough (1989). BCC composition is from Rudnick and Gao (2003). LN-dykes in Liaoning, YS-dykes in Yanshan, SD-dykes in Shandong.

Fig. 11. (a) (^{87}Sr/^{86}Sr)_i, (b) ε_{Nd}(t), (c) ε_{Hf}(t) and (d) (206Pb/204Pb)_i vs. SiO_2 diagrams of the Cretaceous dykes from the eastern China. The poor correlations between SiO_2 and (^{87}Sr/^{86}Sr)_i, ε_{Nd}(t), ε_{Hf}(t) as well as (206Pb/204Pb)_i clearly imply that there was little to no crustal contamination during the ascent of magmas. LN-dykes in Liaoning, YS-dykes in Yanshan, SD-dykes in Shandong.
The lithospheric mantle is cold and isotopically enriched with high \(^{87}\text{Sr}/^{86}\text{Sr}\) and low \(\varepsilon_{\text{Nd}}(t)\) and \(\varepsilon_{\text{Hf}}(t)\) because of its low-degree melt metasomatism history and long-time isolation from the convective mantle. Relatively high \(^{87}\text{Sr}/^{86}\text{Sr}\) (0.7048 to 0.7103) and \(^{206}\text{Pb}/^{204}\text{Pb}\) (18.79–18.85) and low \(\varepsilon_{\text{Nd}}(t)\) (−12.3 to −5.7) and \(\varepsilon_{\text{Hf}}(t)\) (−16.5 to −8.0) of these dykes are consistent with their derivation from the ancient fertile lithospheric mantle. Meanwhile, the arc-like elemental signatures of these dykes, including the enrichment in LREEs and Hf isotopes and depletion in HFSEs (negative Nb, Ta, Zr, Hf, and P anomalies) could be explained by two possible petrogenetic models: (1) an enriched mantle domain metasomatized by a fluid from subducted plate (Huang et al., 2012; Liang et al., 2017, 2018); (2) mantle source region contaminated by recycled continental crust materials (Ma et al., 2016). As crustal contamination was not an important process during emplacement of the dykes (see above), the spatial geochemical variations shown in Figs. 8, 9, 11 primarily represent a real variation of the ratios for the source mantle. In addition, all these dykes plot along the mantle array in the Hf-Nd isotopic space (Fig. 8b), suggesting that the mantle source isotopic variation is largely controlled by simple magmatic processes.

Ayers (1998) suggested that subduction-zone hydrous fluids have significantly low Nb/U ratio, which was ascribed to the transfer of significant amounts of LILE but not HFSE into the slab-derived hydrous fluid. The HFSEs are more likely to be stored in residual rutile and ilmenite that persist in the subducted slab (Ryerson and Watson, 1987) while fluid-mobile incompatible trace elements are lost during the dehydration. Thus, fluids produced at the sub-arc depths would be characterized by enrichment in fluid-mobile incompatible trace elements such as LILE and Pb but depletion in HFSE such as Nb and Ta (Ringwood, 1990; Zheng et al., 2006; Xu et al., 2013). The relative Nb-Ta-Th depletion in the Mesozoic dykes cannot be interpreted as the presence of rutile as a residual phase because (1) the rutile residue requires the source rock to be basaltic (e.g., eclogite); (2) partial melting of eclogites cannot produce basaltic melts we studied here; (3) rutile has very high solubility in silicate melt and cannot exist as a residual phase during basalt melting (Ryerson and Watson, 1987). Hence, fluid-related metasomatism cannot explain the isotopic enrichment.

Beneath eastern continental China, the subducted paleo-Pacific plate, which can release water as a result of thermal equilibrium with the ambient mantle (Niu, 2005, 2014), has been detected to lie horizontally in the mantle transition zone (410–660 km) in Cenozoic (Kárásn and van der Hilst, 2000; Zhao et al., 2004). It should be noted that the effect of transition-zone slab dehydration differs from subduction-zone metamorphic dehydration in triggering arc magmatism. The transition-zone dehydration is a magmatic process producing hydrous melt that rises and weakens the base of the lithosphere (Niu, 2005).

The mantle metasomatism has been widely used to explain the geochemically enriched signatures of the cratonic lithospheric mantle (e.g., Hawkesworth et al., 1990; Lloyd and Bailey, 1975). For example, mantle metasomatism might explain the large negative \(\varepsilon_{\text{Nd}}(t)\) and \(\varepsilon_{\text{Hf}}(t)\) values of the mafic dykes. While the sub-continental mantle lithosphere (SCLM) which were subject to previous melt extraction is likely depleted in major elements (i.e., high Mg\(_{\#}\), low Al\(_2\)O\(_3\) and high CaO/Al\(_2\)O\(_3\)), it can be re-enriched in terms of incompatible elements throughout its long histories via mantle metasomatism (e.g., O’Reilly and Griffin, 1988), similar to the processes taking place at the lithosphere-asthenosphere boundary beneath ocean basins (Niu and Green, 2018; Niu and O’Hara, 2003) or in a mantle wedge environment (Donnelly et al., 2004). The metasomatism would not significantly affect the major elements, but may result in enrichments in volatiles and the more incompatible elements, leading to enriched isotopic signatures (e.g., the elevated ratios of Rb/Sr, U/Pb, Th/Pb, Nd/Si and Hf/Lu, radiogenic Sr, Pb isotopes and unradiogenic Nd, Hf isotopes; Niu, 2005).

Hence, the mantle metasomatism can explain the isotopically enriched signatures in the mafic dykes (i.e., high \(^{87}\text{Sr}/^{86}\text{Sr}\), low \(\varepsilon_{\text{Nd}}\) and \(\varepsilon_{\text{Hf}}\)).

Niu (2005, 2014) suggested that the water released from the subducted oceanic lithosphere in the mantle transition zone (410–660 Km) beneath eastern China will rise in the form of hydrous melt through the upper asthenospheric mantle and reach the lithosphere. Following these interpretations, we propose that the dykes in eastern continental China were derived from partial melting of the sub-continental lithospheric mantle (SCLM) refertilized by slab derived fluids in the form of hydrous melt, which are consistent with our data.

5.3. Geodynamic implications

The rapid delamination, thermal erosion and flat subduction models for interpreting the NCC destructions since the Mesozoic are physically problematic (Niu et al., 2015). There are many lines of evidence suggest that the presence of the similar transition zone slab back in the Mesozoic as indicated by the widespread Cretaceous magmas throughout eastern China from NE to SE, which marks the presence of an active continental margins related to northwestward subduction of the paleo-Pacific seafloor (Niu, 2014; Niu et al., 2015). The subducted Pacific slab beneath eastern China is shown to be stagnant in the mantle transition zone on tomographic image (Huang et al., 2012). This transition zone dehydration process will facilitate the production of hydrous melt that ascends and migrates upwards to weaken the base of the ancient lithosphere by hydration, which can effectively convert the basal lithospheric mantle into the asthenospheric mantle. This is in effect the process of lithosphere thinning (Niu, 2005), accompanied by the surface volcanism with the ascending hydrous melt assimilated with the metasomatic components in the prior lithosphere to form geochemically enriched basaltic melts (Niu, 2005), i.e., the mafic melts in eastern continental China of our study. To be specific, recent studies revealed that the lithospheric mantle beneath the NCC was more hydrous (\(>1000\) ppm) at \(-125\) Ma, which is significantly higher than H\(_2\)O contents of the lithospheric mantle in the Late Cretaceous and the Cenozoic (Li et al., 2015). Therefore, we suggest that the slab-derived hydrous fluid in the form of hydrous melt from the subducted paleo-Pacific plate triggered the partial melting of the metasomatized mantle and resulted in the magmatism in eastern continental China (Kuritani et al., 2011; Sakuyama et al., 2013). Previous subduction-induced trace element enrichment may also exist, but it might be overprinted or intensively modified by such a westward subduction event.
derived water in the form of incipient hydrous melt percolates upwards, metasomatizes the upper mantle, and weakens/converts the basal lithosphere into asthenosphere accompanied by melting of the being converted lithosphere/asthenosphere to produce voluminous mafic magmas (Fig. 12). Mesozoic lithospheric thinning in eastern continental China is best explained by a process that “transformed” the basal portion of the lithosphere into convective asthenosphere by hydration. The Mesozoic volcanism (mafic magmas) may be genetically associated with the lithospheric thinning because the basaltic source is ancient isotopically enriched (εNd < 0, εHf < 0) lithosphere which had been converted into asthenosphere with the melts undergoing crystallization to evolve into some of the more felsic dikes. This mafic magmas underplated the lower crust, causing partial melting to generate the widespread granitoids throughout eastern continental China in the Cretaceous.

6. Conclusions

(1) The K–Ar and zircon ages indicate that the dikes from eastern continental China we study are of Early Cretaceous age (130–110 Ma), broadly synchronous with the massive emplacement of granitic plutons in the region, ultimately as the consequence of lithospheric thinning.

(2) The dikes have arc-like magmatic characteristics with enrichment in LILEs and LREEs, high (87Sr/86Sr), low εNd(t) and the εHf(t), pointing to their parental magma derivation from geochemically enriched mantle lithosphere. During ascent, these magmas underwent fractional crystallization of olivine and clinopyroxene with limited crustal contamination.

(3) The geochemical enrichment of the mantle lithosphere as the source of magmas parental to these dikes resulted from ancient metasomatism most likely caused by water (hydrous melt) released from the subduction of the paleo-Pacific slab in the mantle transition zone or even earlier events.

(4) The basaltic melts rise, underplate/intrude the lower crust en route to the surface (the Mesozoic basalts/ minor andesites with “arc” signature), and cause crustal melting for the observed granitoid magmatism in eastern continental China. In fact, the widespread Mesozoic granitoids in eastern continental China all resulted from crustal melting induced by mantle derived melts, ultimately associated with the lithospheric thinning.

Acknowledgments

We thank Huixia Cui, Yan Hu for sample preparation. We thank Jianxin Zhao for laboratory assistance in geochemistry and isotope analysis. We appreciate two anonymous reviewers for constructive comments and editor Dr. Andrew Kerr for handling this manuscript. This work was supported by grants from Chinese Academy of Sciences, regional and local authorities (Shandong Province and City of Qingdao, U1606401), Qingdao National laboratory of ocean sciences and Technology (2015ASK03) and National Natural Science Foundation of China (41630968, 91014003) and the 111 Project of China (B110804).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.lithos.2019.02.024.

References

